The synthesis of high-dielectric-constant (high-κ) dielectric materials and their integration with channel materials have been the key challenges in the state-of-the-art transistor architecture, as they can provide strong gate control and low operating voltage. For next-generation electronics, high-mobility two-dimensional (2D) layered semiconductors with dangling-bond-free surfaces and an atomic-thick thickness are being explored as channel materials to achieve shorter channel lengths and less interfacial scattering. Nowadays, the integration of high-κ dielectrics with high-mobility 2D semiconductors mainly relies on atomic layer deposition or transfer stacking, which may cause several undesirable problems, such as channel damage and interface traps.
View Article and Find Full Text PDFThe observation of superconductivity in infinite-layer nickelates has attracted significant attention due to its potential as a new platform for exploring high-T superconductivity. However, thus far, superconductivity has only been observed in epitaxial thin films, which limits the manipulation capabilities and modulation methods compared to two-dimensional exfoliated materials. Given the exceptionally giant strain tunability and stacking capability of freestanding membranes, separating superconducting nickelates from the as-grown substrate is a novel way to engineer the superconductivity and uncover the underlying physics.
View Article and Find Full Text PDFFreestanding perovskite oxide membranes have drawn great attention recently since they offer exceptional structural tunability and stacking ability, providing new opportunities in fundamental research and potential device applications in silicon-based semiconductor technology. Among different types of sacrificial layers, the (Ca, Sr, Ba)AlO compounds are most widely used since they can be dissolved in water and prepare high-quality perovskite oxide membranes with clean and sharp surfaces and interfaces; However, the typical transfer process takes a long time (up to hours) in obtaining millimeter-size freestanding membranes, let alone realize wafer-scale samples with high yield. Here, a new member of the SrO-AlO family, SrAlO is introduced, and its high dissolution rate, ≈10 times higher than that of SrAlO is demonstrated.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2022
Two-dimensional electron gas (2DEG) at the interface of amorphous AlO/SrTiO (aAO/STO) heterostructures has received considerable attention owing to its convenience of fabrication and relatively high mobility. The integration of these 2DEG heterostructures on a silicon wafer is highly desired for electronic applications but remains challanging up to date. Here, conductive aAO/STO heterostructures have been synthesized on a silicon wafer via a growth-and-transfer method.
View Article and Find Full Text PDFIn the exploration of new infrared nonlinear optical (IR NLO) materials, element substitution has been developed as an effective way to adjust the structural features and material performances. A series of new IR NLO materials have been discovered in the I-Ba-M-Q system ( I = Li, Na, Cu, and Ag; M = Si, Ge, and Sn; Q = S and Se), and they undergo interesting structural transformation with different element substitution except Li analogues. Herein, we have successfully synthesized three selenides with different space groups (AgBaSiSe: I4̅2 m; AgBaGeSe and AgBaSnSe: I222) in the above system and studied their properties through experimental and theoretical methods.
View Article and Find Full Text PDF