Macrophages play a key role in ozone-induced lung injury by regulating both the initiation and resolution of inflammation. These distinct activities are mediated by pro-inflammatory and anti-inflammatory/proresolution macrophages which sequentially accumulate in injured tissues. Macrophage activation is dependent, in part, on intracellular metabolism.
View Article and Find Full Text PDFExposure to ozone causes decrements in pulmonary function, a response associated with alterations in lung lipids. Pulmonary lipid homeostasis is dependent on the activity of peroxisome proliferator activated receptor gamma (PPARγ), a nuclear receptor that regulates lipid uptake and catabolism by alveolar macrophages (AMs). Herein, we assessed the role of PPARγ in ozone-induced dyslipidemia and aberrant lung function in mice.
View Article and Find Full Text PDFChlorine (Cl) gas is a highly toxic and oxidizing irritant that causes life-threatening lung injuries. Herein, we investigated the impact of Cl-induced injury and oxidative stress on lung macrophage phenotype and function. Spontaneously breathing male C57BL/6J mice were exposed to air or Cl (300 ppm, 25 min) in a whole-body exposure chamber.
View Article and Find Full Text PDFNitrogen mustard (NM) is a cytotoxic vesicant known to cause acute lung injury which progresses to fibrosis; this is associated with a sequential accumulation of pro- and anti-inflammatory macrophages in the lung which have been implicated in NM toxicity. Farnesoid X receptor (FXR) is a nuclear receptor involved in regulating lipid homeostasis and inflammation. In these studies, we analyzed the role of FXR in inflammatory macrophage activation, lung injury and oxidative stress following NM exposure.
View Article and Find Full Text PDFOzone is a ubiquitous air pollutant that causes lung damage and altered functioning. Evidence suggests that proinflammatory macrophages contribute to ozone toxicity. Herein, we analyzed the role of extracellular vesicles (EVs) and microRNA (miRNA) cargo in ozone-induced macrophage activation.
View Article and Find Full Text PDFCytokine Growth Factor Rev
February 2020
Extracellular vesicles (EVs) have emerged as key regulators of cell-cell communication during inflammatory responses to lung injury induced by diverse pulmonary toxicants including cigarette smoke, air pollutants, hyperoxia, acids, and endotoxin. Many lung cell types, including epithelial cells and endothelial cells, as well as infiltrating macrophages generate EVs. EVs appear to function by transporting cargo to recipient cells that, in most instances, promote their inflammatory activity.
View Article and Find Full Text PDFNitrogen mustard (NM) is a vesicant known to target the lung, causing acute injury which progresses to fibrosis. Evidence suggests that activated macrophages contribute to the pathologic response to NM. In these studies, we analyzed the role of lung lipids generated following NM exposure on macrophage activation and phenotype.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
November 2019
Surfactant protein-D (SP-D) is a regulator of pulmonary innate immunity whose oligomeric state can be altered through -nitrosylation to regulate its signaling function in macrophages. Here, we examined how nitrosylation of SP-D alters the phenotypic response of macrophages to stimuli both in vivo and in vitro. Bronchoalveolar lavage (BAL) from C57BL6/J and SP-D-overexpressing (SP-D OE) mice was incubated with RAW264.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
November 2018
Omics approaches are broadly used to explore endocrine and toxicity-related pathways and functions. Nevertheless, there is still a significant gap in knowledge in terms of understanding the endocrine system and its numerous connections and intricate feedback loops, especially in non-model organisms. The fathead minnow () is a widely used small fish model for aquatic toxicology and regulatory testing, particularly in North America.
View Article and Find Full Text PDF