Accurate prediction of drug-target interactions (DTIs) is pivotal for accelerating the processes of drug discovery and drug repurposing. MVCL-DTI, a novel model leveraging heterogeneous graphs for predicting DTIs, tackles the challenge of synthesizing information from varied biological subnetworks. It integrates neighbor view, meta-path view, and diffusion view to capture semantic features and employs an attention-based contrastive learning approach, along with a multiview attention-weighted fusion module, to effectively integrate and adaptively weight the information from the different views.
View Article and Find Full Text PDF