Immunoglobulin G (IgG) is traditionally recognized as a plasma protein that neutralizes antigens for immune defense. However, our research demonstrates that IgG predominantly accumulates in adipose tissue during obesity development, triggering insulin resistance and macrophage infiltration. This accumulation is governed by neonatal Fc receptor (FcRn)-dependent recycling, orchestrated in adipose progenitor cells and macrophages during the early and late stages of diet-induced obesity (DIO), respectively.
View Article and Find Full Text PDFBackground: Neurospecific Enolase (NSE), a multifunctional protein, is present in various tissues of the body and plays an important role in many disease processes, such as infection, inflammation, tumours, injury, and immunity. In recent years, the application of NSE in respiratory diseases has become increasingly widespread and a research hotspot.
Objective: This study aims to explore the relationship between NSE and childhood pneumonia, providing assistance for the diagnosis and assessment of pneumonia.
Estrogen is imperative to mammalian reproductivity, metabolism, and aging. However, the hormone activating estrogen receptor (ERs) can cause major safety concerns due to the enrichment of ER in female tissues and certain malignancies. In contrast, ER is more broadly expressed in metabolic tissues and the skin.
View Article and Find Full Text PDFAging is underpinned by pronounced metabolic decline; however, the drivers remain obscure. Here, we report that IgG accumulates during aging, particularly in white adipose tissue (WAT), to impair adipose tissue function and metabolic health. Caloric restriction (CR) decreases IgG accumulation in WAT, whereas replenishing IgG counteracts CR's metabolic benefits.
View Article and Find Full Text PDFNuclear receptors are ligand-regulated transcription factors that regulate vast cellular activities and serve as an important class of drug targets. Among them, peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor family and have been extensively studied for their roles in metabolism, differentiation, development, and cancer, among others. Recently, there has been considerable interest in understanding and defining the function of PPARs and their agonists in regulating innate and adaptive immune responses and their pharmacological potential in combating chronic inflammatory diseases.
View Article and Find Full Text PDFOrganisms must adapt to fluctuating nutrient availability to maintain energy homeostasis. Here, we term the capacity for such adaptation and restoration "metabolic elasticity" and model it through ad libitum-fasting-refeeding cycles. Metabolic elasticity is achieved by coordinate versatility in gene expression, which we call "gene elasticity.
View Article and Find Full Text PDFAging and obesity are the two prominent driving forces of metabolic dysfunction, yet the common underlying mechanisms remain elusive. PPARγ, a central metabolic regulator and primary drug target combatting insulin resistance, is hyperacetylated in both aging and obesity. By employing a unique adipocyte-specific PPARγ acetylation-mimetic mutant knock-in mouse model, namely aKQ, we demonstrate that these mice develop worsened obesity, insulin resistance, dyslipidemia, and glucose intolerance as they age, and these metabolic deregulations are resistant to intervention by intermittent fasting.
View Article and Find Full Text PDFAs a surging public health crisis, obesity and overweight predispose individuals to various severe comorbidities contributed by the accompanying chronic inflammation. However, few options exist for tackling chronic inflammation in obesity or inhibiting depot-specific adiposity. Here, we report that polycationic polyamidoamine (PAMAM) treatment can improve both aspects of obesity.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2023
Systemic glucose metabolism and insulin activity oscillate in response to diurnal rhythms and nutrient availability with the necessary involvement of adipose tissue to maintain metabolic homeostasis. However, the adipose-intrinsic regulatory mechanism remains elusive. Here, the dynamics of PPARγ acetylation in adipose tissue are shown to orchestrate metabolic oscillation in daily rhythms.
View Article and Find Full Text PDFAndrogen excess is one of the most common endocrine disorders of reproductive-aged women, affecting up to 20% of this population. Women with elevated androgens often exhibit hyperinsulinemia and insulin resistance. The mechanisms of how elevated androgens affect metabolic function are not clear.
View Article and Find Full Text PDFBackground: Marrow adipose tissue (MAT) has been shown to be vital for regulating metabolism and maintaining skeletal homeostasis in the bone marrow (BM) niche. As a reflection of BM remodeling, MAT is highly responsive to nutrient fluctuations, hormonal changes, and metabolic disturbances such as obesity and diabetes mellitus. Expansion of MAT has also been strongly associated with bone loss in mice and humans.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
January 2021
Obesity is a potent risk factor for atherosclerotic morbidity and mortality. Cytokines secreted from adipose tissue, namely, adipokines, have been suggested to be actively involved in atherosclerosis. One of the most abundant adipokines, adipsin, is downregulated in obesity.
View Article and Find Full Text PDFAdvanced glycation end products (AGEs) have been implicated in the disease process of diabetes mellitus. They have also been found in senile plaques and neurofibrillary tangles in the brains of Alzheimer's disease patients. Furthermore, abnormally high levels of D-ribose and D-glucose were found in the urine of patients with type 2 diabetes mellitus, suggesting that diabetic patients suffer from dysmetabolism of not only D-glucose but also D-ribose.
View Article and Find Full Text PDFAging (Albany NY)
July 2019
Although many mechanisms have been proposed for diabetic encephalopathy in type 2 diabetes mellitus (T2DM), the risk factors for cognitive impairment in type 1 diabetes mellitus (T1DM) are less clear. Here, we show that streptozotocin (STZ)-induced T1DM rats showed cognitive impairment in both Y maze and Morris water maze assays, accompanied with D-ribose was significantly increased in blood and urine, in addition to D-glucose. Furthermore, advanced glycation end products (AGE), Tau hyperphosphorylation and neuronal death in the hippocampal CA4/DG region were detected in T1DM rats.
View Article and Find Full Text PDFSeeking for the novel biomarkers for Mycoplasma pneumoniae pneumonia (MPP) could be not only helpful for disease diagnosis but also useful for treatment efficacy monitoring. The aim of present study was to evaluate the role of plasma soluble B7-H3 (sB7-H3) in MPP diagnosis and treatment efficacy prediction, and involvement of B7-H3 in MPP disease course. A total of 108 MPP patients and 40 control subjects were recruited into this study for changes of sB7-H3 levels in MPP.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
September 2019
d-Ribose is active in glycation and rapidly produces advanced glycation end products, leading to cell death and to cognitive impairment in mice. Glycated serum protein (GSP) is a relatively short-term biomarker for glycemic control in diabetes mellitus. However, whether d-ribose is related to GSP is unclear.
View Article and Find Full Text PDFFormaldehyde is toxic and has been implicated in the pathologies of various diseases, such as cognitive impairment and cancer. Though d-ribose is widely studied and provided as a supplement to food such as flavor and drinks, no laboratories have reported that d-ribose is involved in the formaldehyde production. Here, we show that formaldehyde is produced from d-ribose in lysine or glycine solution and Tris-HCl buffer under neutral and alkaline conditions.
View Article and Find Full Text PDFd-Ribose (Rib), a reactive glycation compound that exists in organisms, abnormally increases in the urine of diabetic patients and can yield large amounts of advanced glycation end products (AGEs), leading to cell dysfunction. However, whether cellular proteins are sensitive to this type of glycation is unknown. In this study, we found that cellular AGEs accumulate in Chinese hamster ovary (CHO) cells with increased Rib concentration and administration time.
View Article and Find Full Text PDF