Small alterations in extracellular acidity are potentially important modulators of neuronal signaling within the vertebrate retina. Here we report a novel extracellular acidification mechanism mediated by glial cells in the retina. Using self-referencing H+-selective microelectrodes to measure extracellular H+ fluxes, we show that activation of retinal Müller (glial) cells of the tiger salamander by micromolar concentrations of extracellular ATP induces a pronounced extracellular H+ flux independent of bicarbonate transport.
View Article and Find Full Text PDFSelf-referencing H-selective electrodes were used to measure extracellular H fluxes from Müller (glial) cells isolated from the tiger salamander retina. A novel chamber enabled stable recordings using H-selective microelectrodes in a self-referencing format using bicarbonate-based buffer solutions. A small basal H flux was observed from the end foot region of quiescent cells bathed in 24 mM bicarbonate-based solutions, and increasing extracellular potassium induced a dose-dependent increase in H flux.
View Article and Find Full Text PDF