A record number of ^{100}Sn nuclei was detected and new isotopic species toward the proton dripline were discovered at the RIKEN Nishina Center. Decay spectroscopy was performed with the high-efficiency detector arrays WAS3ABi and EURICA. Both the half-life and the β-decay end point energy of ^{100}Sn were measured more precisely than the literature values.
View Article and Find Full Text PDFSeveral new isotopes, ^{96}In, ^{94}Cd, ^{92}Ag, and ^{90}Pd, have been identified at the RIKEN Nishina Center. The study of proton drip-line nuclei in the vicinity of ^{100}Sn led to the discovery of new proton emitters ^{93}Ag and ^{89}Rh with half-lives in the submicrosecond range. The systematics of the half-lives of odd-Z nuclei with T_{z}=-1/2 toward ^{99}Sn shows a stabilizing effect of the Z=50 shell closure.
View Article and Find Full Text PDFThe decay of (19)O(β(-)) and (19)Ne(β(+)) implanted in niobium in its superconducting and metallic phases was measured using purified radioactive beams produced by the SPIRAL GANIL facility. Half-lives and branching ratios measured in the two phases are consistent within a 1σ error bar. This measurement casts strong doubts on the predicted strong electron screening in a superconductor, the so-called superscreening.
View Article and Find Full Text PDFWe report on the g factor measurement of an isomer in the neutron-rich (61)(26)Fe (E(*)=861 keV and T(1/2)=239(5) ns). The isomer was produced and spin aligned via a projectile-fragmentation reaction at intermediate energy, the time dependent perturbed angular distribution method being used for the measurement of the g factor. For the first time, due to significant improvements of the experimental technique, an appreciable residual alignment of the nuclear spin ensemble has been observed, allowing a precise determination of its g factor, including the sign: g=-0.
View Article and Find Full Text PDFA new isomeric 0(+) state was identified as the first excited state in the self-conjugate (N=Z) nucleus 72Kr. By combining for the first time conversion-electron and gamma-ray spectroscopy with the production of metastable states in high-energy fragmentation, the electric-monopole decay of the new isomer to the ground state was established. The new 0(+) state is understood as the band head of the known prolate rotational structure, which strongly supports the interpretation that 72Kr is one of the rare nuclei having an oblate-deformed ground state.
View Article and Find Full Text PDFIn an experiment at the SISSI-LISE3 facility of GANIL, the decay of the proton drip line nucleus 45Fe has been studied. Fragment-implantation events have been correlated with radioactive decay events in a 16x16 pixel silicon-strip detector. The decay-energy spectrum of 45Fe implants shows a distinct peak at (1.
View Article and Find Full Text PDFThe neutron-rich (66,68)Ni have been produced at GANIL via interactions of a 65.9A MeV 70Zn beam with a 58Ni target. Their reduced transition probability B(E2;0(+)(1)-->2+) has been measured for the first time by Coulomb excitation in a (208)Pb target at intermediate energy.
View Article and Find Full Text PDFThe two-neutron halo nucleus (14)Be has been investigated in a kinematically complete measurement of the fragments ((12)Be and neutrons) produced in dissociation at 35 MeV/nucleon on C and Pb targets. Two-neutron removal cross sections, neutron angular distributions, and invariant mass spectra were measured, and the contributions from electromagnetic dissociation (EMD) were deduced. Comparison with three-body model calculations suggests that the halo wave function contains a large nu(2s(1/2))(2) admixture.
View Article and Find Full Text PDFIn an experiment at the SISSI/LISE3 facility of GANIL, we used the projectile fragmentation of a primary 58Ni26+ beam at 74.5 MeV/nucleon with an average current of 3 &mgr;A on a natural nickel target to produce very neutron-deficient isotopes. In a 10-day experiment, 287 42Cr isotopes, 53 45Fe isotopes, 106 49Ni isotopes, and 4 48Ni isotopes were unambiguously identified.
View Article and Find Full Text PDFThe masses of 31 neutron-rich nuclei in the range A = 29-47 have been measured. The precision of 19 masses has been significantly improved and 12 masses were measured for the first time. The neutron-rich Cl, S, and P isotopes are seen to exhibit a change in shell structure around N = 28.
View Article and Find Full Text PDF