High-performance liquid chromatography (HPLC) is an invaluable technique that has been used for many decades for the separation of various molecules. The reproducible collection of eluates from these systems has been significantly improved via its automation by fraction collection systems. Current commercially available fraction collectors are not easily customizable, incompatible with other platforms, and come with a large cost barrier making them inaccessible to many researchers.
View Article and Find Full Text PDFThe structural determination of natural products (NPs) can be arduous because of sample heterogeneity. This often demands iterative purification processes and characterization of complex molecules that may be available only in miniscule quantities. Microcrystal electron diffraction (microED) has recently shown promise as a method to solve crystal structures of NPs from nanogram quantities of analyte.
View Article and Find Full Text PDFAmong fungal pathogens, infections by drug-resistant species continue to pose a major challenge to healthcare. This study aimed to evaluate the activity of the bioactive natural product, penta--galloyl-β-d-glucose (PGG) against multidrug-resistant (MDR) , MDR , and other MDR non- species. Here, we show that PGG has a minimum inhibitory concentration (MIC) of 0.
View Article and Find Full Text PDFMany marine algae occupy habitats that are dark, deep, or encrusted on other organisms and hence are frequently overlooked by natural product chemists. However, exploration of less-studied organisms can lead to new opportunities for drug discovery. Genetic variation at the individual, species, genus, and population levels as well as environmental influences on gene expression enable expansion of the chemical repertoire associated with a taxonomic group, enabling natural product exploration using innovative analytical methods.
View Article and Find Full Text PDFOver the past decades, antibiotic resistance has grown to a point where orthogonal approaches to combating infections caused by resistant bacteria are needed. One such approach is the development of non-microbicidal small molecules that potentiate the activity of conventional antibiotics, termed adjuvants. The diterpene natural product 12(S),16ϵ-dihydroxycleroda-3,13-dien-15,16-olide, which we refer to as (-)-LZ-2112, is known to synergize with oxacillin against methicillin-resistant Staphylococcus aureus (MRSA).
View Article and Find Full Text PDFMethicillin-resistant (MRSA) represents one of the most serious infectious disease concerns worldwide, with the CDC labeling it a "serious threat" in 2019. The current arsenal of antibiotics works by targeting bacterial growth and survival, which exerts great selective pressure for the development of resistance. The development of novel anti-infectives that inhibit quorum sensing and thus virulence in MRSA has been recurrently proposed as a promising therapeutic approach.
View Article and Find Full Text PDFAntimicrobial resistance represents a serious threat to human health across the globe. The cost of bringing a new antibiotic from discovery to market is high and return on investment is low. Furthermore, the development of new antibiotics has slowed dramatically since the 1950s' golden age of discovery.
View Article and Find Full Text PDFThe crisis of antibiotic resistance necessitates creative and innovative approaches, from chemical identification and analysis to the assessment of bioactivity. Plant natural products (NPs) represent a promising source of antibacterial lead compounds that could help fill the drug discovery pipeline in response to the growing antibiotic resistance crisis. The major strength of plant NPs lies in their rich and unique chemodiversity, their worldwide distribution and ease of access, their various antibacterial modes of action, and the proven clinical effectiveness of plant extracts from which they are isolated.
View Article and Find Full Text PDFThe rise of antibiotic resistance has necessitated a search for new antimicrobials with potent activity against multidrug-resistant gram-negative pathogens, such as carbapenem-resistant Acinetobacter baumannii (CRAB). In this study, a library of botanical extracts generated from plants used to treat infections in traditional medicine was screened for growth inhibition of CRAB. A crude extract of Schinus terebinthifolia leaves exhibited 80% inhibition at 256 µg/mL and underwent bioassay-guided fractionation, leading to the isolation of pentagalloyl glucose (PGG), a bioactive gallotannin.
View Article and Find Full Text PDFMixtures of drugs often have greater therapeutic value than any of their constituent drugs alone, and such combination therapies are widely used to treat diseases such as cancer, malaria, and viral infections. However, developing useful drug mixtures is challenging due to complex interactions between drugs. Natural substances can be fruitful sources of useful drug mixtures because secondary metabolites produced by living organisms do not often act in isolation in vivo.
View Article and Find Full Text PDFThe rise of antibiotic resistance presents a significant healthcare challenge and precludes the use of many otherwise valuable antibiotics. One potential solution to this problem is the use of antibiotics in combination with resistance-modifying agents, compounds that act synergistically with existing antibiotics to resensitize previously resistant bacteria. In this study, 12(),16ξ-dihydroxycleroda-3,13-dien-15,16-olide, a clerodane diterpene isolated from the medicinal plant , was found to synergize with oxacillin against methicillin-resistant s.
View Article and Find Full Text PDFAntimicrobial resistance is a global issue that threatens the effective practice of modern medicine and global health. The emergence of multidrug-resistant (MDR) fungal strains of and azole-resistant were highlighted in the Centers for Disease Control and Prevention's (CDC) 2019 report, . Conventional antifungals used to treat fungal infections are no longer as effective, leading to increased mortality.
View Article and Find Full Text PDF