Biopharm Drug Dispos
May 2009
The determination of metabolic pathways of a drug candidate through the identification of circulating and excreted metabolites is vitally important to understanding its physical and biological effects. Knowledge of metabolite profiles of a drug candidate in animals and humans is essential to ensure that animal species used in toxicological evaluations of new drug candidates are appropriate models of humans. The recent FDA final guidance recommends that human oxidative metabolites whose exposure exceeds 10% of the parent AUC at steady-state should be assessed in at least one of the preclinical animal species used in toxicological assessment.
View Article and Find Full Text PDFMaxiPost [(3S)-(+)-(5-chloro-2-methoxyphenyl)-1,3-dihydro-3-fluoro-6-(trifluoromethyl)-2H-indole-2-one); BMS-204352] is an investigational maxi-K channel opener to treat ischemic stroke. This study reports the disposition, metabolism, pharmacokinetics, and protein covalent binding of (14)C-labeled MaxiPost in healthy male volunteers as well as in dogs and rats. After each human subject received a single dose of 10 mg (14)C-labeled BMS-204352 (50 microCi) as a 5-ml intravenous infusion lasting 5 min, the plasma radioactivity concentrations showed a unique profile, wherein the concentration appeared to increase initially, followed by a terminal decline.
View Article and Find Full Text PDFMaxiPost [(3S)-(+)-(5-chloro-2-methoxyphenyl)-1,3-dihydro-3-fluoro-6-(trifluoromethyl)-2H-indole-2-one), or BMS-204352)] is a potent and specific maxi-K channel opener for potential use to treat stroke. This article describes structural characterization of a major human N-glucuronide metabolite of BMS-204352 and identification of the enzyme responsible for the N-glucuronidation reaction. After intravenous administrations of [(14)C]BMS-204352 (10 mg, 50 microCi) to eight healthy human subjects, one major metabolite M representing an average of 17% of the radioactive dose was excreted in pooled urine collected over 0 to 336 h after dosing.
View Article and Find Full Text PDFThis report summarizes the deliberations of a multidisciplinary committee, sponsored by the Pharmaceutical Research and Manufacturers of America, on current "best practices" within the U.S. pharmaceutical industry in assessing the role of drug metabolites as potential mediators of the toxicity of new drug products.
View Article and Find Full Text PDF