Publications by authors named "Lewis Hutton"

Using the recently developed multistate mapping approach to surface hopping (multistate MASH) method combined with SA(3)-CASSCF(12,12)/aug-cc-pVDZ electronic structure calculations, the gas-phase isotropic ultrafast electron diffraction (UED) of cyclobutanone is predicted and analyzed. After excitation into the n-3s Rydberg state (S2), cyclobutanone can relax through two S2/S1 conical intersections, one characterized by compression of the CO bond and the other by dissociation of the α-CC bond. Subsequent transfer into the ground state (S0) is then achieved via two additional S1/S0 conical intersections that lead to three reaction pathways: α ring-opening, ethene/ketene production, and CO liberation.

View Article and Find Full Text PDF

We present the result of our calculations of ultrafast electron diffraction (UED) for cyclobutanone excited into the S2 electronic state, which is based on the non-adiabatic dynamics simulations with the Ab Initio Multiple Cloning (AIMC) method with the electronic structure calculated at the SA(3)-CASSCF(12,12)/aug-cc-pVDZ level of theory. The key features in the UED pattern were identified, which can be used to distinguish between the reaction pathways observed in the AIMC dynamics, although there is a significant overlap between representative signals due to the structural similarity of the products. The calculated UED pattern can be compared with the experiment.

View Article and Find Full Text PDF

The photochemistry of pyruvic acid has attracted much scientific interest because it is believed to play critical roles in atmospheric chemistry. However, under most atmospherically relevant conditions, pyruvic acid deprotonates to form its conjugate base, the photochemistry of which is essentially unknown. Here, we present a detailed study of the photochemistry of the isolated pyruvate anion and uncover that it is extremely rich.

View Article and Find Full Text PDF

Characterizing the photochemical reactivity of transient volatile organic compounds (VOCs) in our atmosphere begins with a proper understanding of their abilities to absorb sunlight. Unfortunately, the photoabsorption cross-sections for a large number of transient VOCs remain unavailable experimentally due to their short lifetime or high reactivity. While structure-activity relationships (SARs) have been successfully employed to estimate the unknown photoabsorption cross-sections of VOCs, computational photochemistry offers another promising strategy to predict not only the vertical electronic transitions of a given molecule but also the width and shape of the bands forming its absorption spectrum.

View Article and Find Full Text PDF

A full-dimensional simulation of the photodissociation of 1,3-cyclohexadiene in the manifold of three electronic states was performed via nonadiabatic surface hopping dynamics using extended multistate complete active space second-order perturbation (XMS-CASPT2) electronic structure theory with fully analytic nonadiabatic couplings. With the 47 ± 8% product quantum yield calculated from the 136 trajectories, generally 400 fs-long, and an estimated excited lifetime of 89 ± 9 fs, our calculations provide a detailed description of the nonadiabatic deactivation mechanism, showing the existence of an extended conical intersection seam along the reaction coordinate. The nature of the preferred reaction pathways on the ground state is discussed and extensive comparison to the previously published full dimensional dynamics calculations is provided.

View Article and Find Full Text PDF