Publications by authors named "Lewis Griffin"

Speech deepfakes are artificial voices generated by machine learning models. Previous literature has highlighted deepfakes as one of the biggest security threats arising from progress in artificial intelligence due to their potential for misuse. However, studies investigating human detection capabilities are limited.

View Article and Find Full Text PDF

Defective DNA mismatch repair is one pathogenic pathway to colorectal cancer. It is characterised by microsatellite instability which provides a molecular biomarker for its detection. Clinical guidelines for universal testing of this biomarker are not met due to resource limitations; thus, there is interest in developing novel methods for its detection.

View Article and Find Full Text PDF

Inferring the connectivity of biological neural networks from neural activation data is an open problem. We propose that the analogous problem in artificial neural networks is more amenable to study and may illuminate the biological case. Here, we study the specific problem of assigning artificial neurons to locations in a network of known architecture, specifically the LeNet image classifier.

View Article and Find Full Text PDF

Raman Spectroscopy has long been anticipated to augment clinical decision making, such as classifying oncological samples. Unfortunately, the complexity of Raman data has thus far inhibited their routine use in clinical settings. Traditional machine learning models have been used to help exploit this information, but recent advances in deep learning have the potential to improve the field.

View Article and Find Full Text PDF

The cystic fibrosis transmembrane conductance regulator (CFTR) is a plasma membrane anion channel that plays a key role in controlling transepithelial fluid movement. Excessive activation results in intestinal fluid loss during secretory diarrheas, whereas mutations underlie cystic fibrosis (CF). Anion permeability depends both on how well CFTR channels work (permeation/gating) and on how many are present at the membrane.

View Article and Find Full Text PDF

Iterative screening is a process in which screening is done in batches, with each batch filled by using machine learning to select the most promising compounds from the library based on the previous results. We believe iterative screening is poised to enhance the screening process by improving hit finding while at the same time reducing the number of compounds screened. In addition, we see this process as a key enabler of next-generation high-throughput screening (HTS), which uses more complex assays that better describe the biology but demand more resource per screened compound.

View Article and Find Full Text PDF

A range of explanations have been advanced for the systems of colour names found in different languages. Some explanations give special, fundamental status to a subset of colour categories. We argue that a subset of colour categories, if fundamental, will be coherent - meaning that a non-trivial criterion distinguishes them from the other colour categories.

View Article and Find Full Text PDF

The spectral reflectance function of a surface specifies the fraction of the illumination reflected by it at each wavelength. Jointly with the illumination spectral density, this function determines the apparent colour of the surface. Models for the distribution of spectral reflectance functions in the natural environment are considered.

View Article and Find Full Text PDF

Background: X-ray imaging is a crucial and ubiquitous tool for detecting threats to transport security, but interpretation of the images presents a logistical bottleneck. Recent advances in Deep Learning image classification offer hope of improving throughput through automation. However, Deep Learning methods require large quantities of labelled training data.

View Article and Find Full Text PDF

Ordinary language users group colours into categories that they refer to by a name e.g. pale green.

View Article and Find Full Text PDF

Image segmentation is a fundamental precursor to quantitative image analysis. At present, no standardised methodology exists for segmenting images of fluorescent proxies for trace evidence. Experiments evaluated (i) whether manual segmentation is reproducible within and between examiners (with three participants repeatedly tracing three images) (ii) whether manually defining a threshold level offers accurate and reproducible results (with 20 examiners segmenting 10 images), and (iii) whether a global thresholding algorithm might perform with similar accuracy, while offering improved reproducibility and efficiency (16 algorithms tested).

View Article and Find Full Text PDF
The Atlas Structure of Images.

IEEE Trans Pattern Anal Mach Intell

January 2019

Many operations of vision require image regions to be isolated and inter-related. This is challenging when they are different in detail and extent. Practical methods of Computer Vision approach this through the tools of downsampling, pyramids, cropping and patches.

View Article and Find Full Text PDF

Subjective assessments of spatial regularity are common in everyday life and also in science, for example in developmental biology. It has recently been shown that regularity is an adaptable visual dimension. It was proposed that regularity is coded via the peakedness of the distribution of neural responses across receptive field size.

View Article and Find Full Text PDF

Neurons communicate with each other through synapses, which show enrichment for specialized receptors. Although many studies have explored spatial enrichment and diffusion of these receptors in dissociated neurons using single particle tracking, much less is known about their dynamic properties at synapses in complex tissue like brain slices. Here we report the use of smaller and highly specific quantum dots conjugated with a recombinant single domain antibody fragment (VHH fragment) against green fluorescent protein to provide information on diffusion of adhesion molecules at the growth cone and neurotransmitter receptors at synapses.

View Article and Find Full Text PDF

We demonstrate identification of position, material, orientation, and shape of objects imaged by a ^{85}Rb atomic magnetometer performing electromagnetic induction imaging supported by machine learning. Machine learning maximizes the information extracted from the images created by the magnetometer, demonstrating the use of hidden data. Localization 2.

View Article and Find Full Text PDF

Growing microtubules are protected from depolymerization by the presence of a GTP or GDP/Pi cap. End-binding proteins of the EB1 family bind to the stabilizing cap, allowing monitoring of its size in real time. The cap size has been shown to correlate with instantaneous microtubule stability.

View Article and Find Full Text PDF

Background: Non-intrusive inspection systems based on X-ray radiography techniques are routinely used at transport hubs to ensure the conformity of cargo content with the supplied shipping manifest. As trade volumes increase and regulations become more stringent, manual inspection by trained operators is less and less viable due to low throughput. Machine vision techniques can assist operators in their task by automating parts of the inspection workflow.

View Article and Find Full Text PDF

Background: Large-scale transmission radiography scanners are used to image vehicles and cargo containers. Acquired images are inspected for threats by a human operator or a computer algorithm. To make accurate detections, it is important that image values are precise.

View Article and Find Full Text PDF

We review the relatively immature field of automated image analysis for X-ray cargo imagery. There is increasing demand for automated analysis methods that can assist in the inspection and selection of containers, due to the ever-growing volumes of traded cargo and the increasing concerns that customs- and security-related threats are being smuggled across borders by organised crime and terrorist networks. We split the field into the classical pipeline of image preprocessing and image understanding.

View Article and Find Full Text PDF

We have shown in previous work that the perception of order in point patterns is consistent with an interval scale structure (Protonotarios, Baum, Johnston, Hunter, & Griffin, 2014). The psychophysical scaling method used relies on the confusion between stimuli with similar levels of order, and the resulting discrimination scale is expressed in just-noticeable differences (jnds). As with other perceptual dimensions, an interesting question is whether suprathreshold (perceptual) differences are consistent with distances between stimuli on the discrimination scale.

View Article and Find Full Text PDF

Oxygen plays a key role in stem cell biology as a signaling molecule and as an indicator of cell energy metabolism. Quantification of cellular oxygen kinetics, i.e.

View Article and Find Full Text PDF

The astrocytic GLT-1 (or EAAT2) is the major glutamate transporter for clearing synaptic glutamate. While the diffusion dynamics of neurotransmitter receptors at the neuronal surface are well understood, far less is known regarding the surface trafficking of transporters in subcellular domains of the astrocyte membrane. Here, we have used live-cell imaging to study the mechanisms regulating GLT-1 surface diffusion in astrocytes in dissociated and brain slice cultures.

View Article and Find Full Text PDF

Clathrin-mediated endocytosis (CME) is a fundamental property of eukaryotic cells. Classical CME proceeds via the formation of clathrin-coated pits (CCPs) at the plasma membrane, which invaginate to form clathrin-coated vesicles, a process that is well understood. However, clathrin also assembles into flat clathrin lattices (FCLs); these structures remain poorly described, and their contribution to cell biology is unclear.

View Article and Find Full Text PDF

Human observers readily make judgements about the degree of order in planar arrangements of points (point patterns). Here, based on pairwise ranking of 20 point patterns by degree of order, we have been able to show that judgements of order are highly consistent across individuals and the dimension of order has an interval scale structure spanning roughly 10 just-notable-differences (jnd) between disorder and order. We describe a geometric algorithm that estimates order to an accuracy of half a jnd by quantifying the variability of the size and shape of spaces between points.

View Article and Find Full Text PDF

Adherent cell lines are widely used across all fields of biology, including drug discovery, toxicity studies, and regenerative medicine. However, adherent cell processes are often limited by a lack of advances in cell culture systems. While suspension culture processes benefit from decades of development of instrumented bioreactors, adherent cultures are typically performed in static, noninstrumented flasks and well-plates.

View Article and Find Full Text PDF