Publications by authors named "Lewis G Carpenter"

With an ever-increasing interest in secure and reliable free-space optical communication, upconversion detectors enabled through nonlinear optical processes are an attractive route to transmitting data as a mid-infrared signal. This spectral region is known to have a higher transmissivity through the atmosphere. In this work, we present an upconversion scheme for detection in the silicon absorption band using magnesium-oxide doped periodically poled lithium niobate to generate 21 mW of a 3.

View Article and Find Full Text PDF

Specific proteins and their aggregates form toxic amyloid plaques and neurofibrillary tangles in the brains of people suffering from neurodegenerative diseases such as Alzheimer's and Parkinson's. It is important to study these conformational changes to identify and differentiate these diseases at an early stage so that timely medication is provided to patients. Mid-infrared spectroscopy can be used to monitor these changes by studying the line-shapes and the relative absorbances of amide bands present in proteins.

View Article and Find Full Text PDF

Periodically poled lithium niobate (PPLN) waveguides are a proven and popular means for efficient wavelength conversion. However, conventional PPLN waveguides typically have small mode field diameters (MFD) (≲6 µm) or significant insertion and/or propagation losses, limiting their ability to operate at multi-watt power levels. In this work we utilise zinc indiffused PPLN ridge waveguides that have a larger MFD, favourable pump/SHG modal overlap, and low insertion losses.

View Article and Find Full Text PDF

We present the design and characterization of a zinc-indiffused periodically poled lithium-niobate ridge waveguide for second-harmonic generation of ∼390 light from 780 nm. We use a newly developed, broadband near-infrared vertical external-cavity surface-emitting laser (VECSEL) to investigate the potential for lower-footprint nonlinear optical pump sources as an alternative to larger commercial laser systems. We demonstrate a VECSEL with an output power of 500 mW, containing an intracavity birefringent filter for spectral narrowing and wavelength selection.

View Article and Find Full Text PDF

We have demonstrated the first MgO:PPLN ridge waveguides based on ZnO indiffusion and dicing. The fabrication process utilizes ductile regime dicing of a planar waveguide layer producing second harmonic generation (SHG) devices with a near-symmetric sinc spectral profile, indicating highly uniform 40 mm long devices. A near circular pump mode is also obtained enabling efficient coupling to single mode telecommunication fibers.

View Article and Find Full Text PDF

Protein sensing in biological fluids provides important information to diagnose many clinically relevant diseases. Mid-infrared (MIR) absorption spectroscopy of bovine serum albumin (BSA) is experimentally demonstrated on a germanium on silicon (GOS) waveguide in the 1900-1000 cm (5.3-10.

View Article and Find Full Text PDF

This Letter demonstrates a refractometer in integrated optical fiber, a new optical platform that planarizes fiber using flame hydrolysis deposition (FHD). The unique advantage of the technology is survivability in harsh environments. The platform is mechanically robust, and can survive elevated temperatures approaching 1000°C and exposure to common solvents, including acetone, gasoline, and methanol.

View Article and Find Full Text PDF

We report transmission measurements of germanium on silicon waveguides in the 7.5-8.5 μm wavelength range, with a minimum propagation loss of 2.

View Article and Find Full Text PDF

We report the fabrication and characterization of high index contrast (Δn≈0.9) GeTe4 channel waveguides on ZnSe substrate for evanescent-field-based biosensing applications in the mid-IR spectral region. GeTe4 films were deposited by RF sputtering and characterized for their structure, composition, transparency, and dispersion.

View Article and Find Full Text PDF

We demonstrate machining of precision slots in silica with nanoscale roughness for applications in photonics. Using our in-house developed milling system we have achieved machined slots with surface roughness of 3.0 nm (Sa) and 17 µm depth of cut.

View Article and Find Full Text PDF

A dual cantilever device has been demonstrated which can operate as a force sensor or variable attenuator. The device is fabricated using physical micromachining techniques that do not require cleanroom class facilities. The response of the device to mechanical actuation is measured, and shown to be well described by conventional fiber optic angular misalignment theory.

View Article and Find Full Text PDF

A set of rapid prototyping techniques are combined to construct a laterally-tilted Bragg grating refractometer in a novel planar geometry. The tilted Bragg grating is fabricated in a silica-on-silicon planar substrate using a dual beam direct UV writing (DUW) technique. Lateral cladding mode confinement is subsequently achieved by physically micromachining two trenches either side of the direct UV written waveguide.

View Article and Find Full Text PDF

A new method for creating microcantilevers in glass allows integration of optical waveguides and Bragg gratings. Devices are fabricated by high precision sawing, followed by direct UV writing of waveguides with Bragg gratings and then chemical etching to release the freestanding glass structures. Optical measurement of the Bragg gratings together with piezo-actuation allows the mechanical resonances to be probed.

View Article and Find Full Text PDF