We present a comprehensive sequence and bioinformatic analysis of the prototypical microcin plasmid, pMccb17, which includes a definitive sequence for the microcin operon, mcb. Microcin B17 (MccB17) is a ribosomally synthesized and posttranslationally modified peptide produced by Escherichia coli. It inhibits bacterial DNA gyrase similarly to quinolone antibiotics.
View Article and Find Full Text PDFMembers of the Burkholderia cepacia complex (Bcc) are an important cause of opportunistic or nosocomial infections that may be hard to treat due to a high incidence of multidrug resistance. We characterised a collection of 51 clinical isolates from this complex, assigning them to 18 sequence types using multi-locus sequence type analysis. Resistance to eight commonly used antibiotics was assessed using by using agar-dilution assays to calculate MICs and widespread and heterogeneous multidrug resistance was confirmed, with eight strains proving resistant to all antibiotics tested.
View Article and Find Full Text PDFThe IncP (Incompatibility group P) plasmids are important carriers in the spread of antibiotic resistance across Gram-negative bacteria. Gene expression in the IncP-1 plasmids is stringently controlled by a network of four global repressors, KorA, KorB, TrbA and KorC interacting cooperatively. Intriguingly, KorA and KorB can act as co-repressors at varying distances between their operators, even when they are moved to be on opposite sides of the DNA.
View Article and Find Full Text PDFOchratoxins are a group of mycotoxins produced by a variety of moulds. Ochratoxin A (OTA), the most prominent member of this toxin family, was first described by van der Merwe et al. in Nature in 1965.
View Article and Find Full Text PDFThe type III protein secretion system is an important pathogenicity factor of enteropathogenic and enterohaemorrhagic Escherichia coli pathotypes. The genes encoding this apparatus are located on a pathogenicity island (the locus of enterocyte effacement) and are transcriptionally activated by the master regulator Ler. In each pathotype Ler is also known to regulate genes located elsewhere on the chromosome, but the full extent of the Ler regulon is unclear, especially for enteropathogenic E.
View Article and Find Full Text PDFExpression of the genes in the locus of enterocyte effacement (LEE) in enterohaemorrhagic Escherichia coli is primarily co-ordinated by expression of the LEE1 operon. GrlA is a LEE-encoded transcription regulator that has been proposed to be involved in the regulation of expression of the LEE1 operon. We describe a simple plasmid-based system to investigate the LEE1 operon regulatory region and to study GrlA-dependent effects.
View Article and Find Full Text PDFHere we show that the type III secretion gatekeeper protein SepL resembles an aberrant effector protein in binding to a class 1 type III secretion chaperone (Orf12, here renamed CesL). We also show that short N-terminal fragments (≤70 amino acids) from SepL are capable of targeting fusion proteins for secretion and translocation.
View Article and Find Full Text PDFBackground: Homologous recombination mediated by the lambda-Red genes is a common method for making chromosomal modifications in Escherichia coli. Several protocols have been developed that differ in the mechanisms by which DNA, carrying regions homologous to the chromosome, are delivered into the cell. A common technique is to electroporate linear DNA fragments into cells.
View Article and Find Full Text PDFParA Walker ATPases form part of the machinery that promotes better-than-random segregation of bacterial genomes. ParA proteins normally occur in one of two forms, differing by their N-terminal domain (NTD) of approximately 100 aa, which is generally associated with site-specific DNA binding. Unusually, and for as yet unknown reasons, parA (incC) of IncP-1 plasmids is translated from alternative start codons producing two forms, IncC1 (364 aa) and IncC2 (259 aa), whose ratio varies between hosts.
View Article and Find Full Text PDFA central feature of broad host range IncP-1 plasmids is the set of regulatory circuits that tightly control plasmid core functions under steady-state conditions. Cooperativity between KorB and either KorA or TrbA repressor proteins is a key element of these circuits and deletion analysis has implicated the conserved C-terminal domain of KorA and TrbA in this interaction. By NMR we show that KorA and KorB interact directly and identify KorA amino acids that are affected on KorB binding.
View Article and Find Full Text PDFWe demonstrate how a single-celled organism could undertake associative learning. Although to date only one previous study has found experimental evidence for such learning, there is no reason in principle why it should not occur. We propose a gene regulatory network that is capable of associative learning between any pre-specified set of chemical signals, in a Hebbian manner, within a single cell.
View Article and Find Full Text PDFIncP-9 plasmids are important vehicles for degradation and resistance genes that contribute to the adaptability of Pseudomonas species in a variety of natural habitats. The three completely sequenced IncP-9 plasmids, pWW0, pDTG1 and NAH7, show extensive homology in replication, partitioning and transfer loci (an approximately 25 kb region) and to a lesser extent in the remaining backbone segments. We used PCR, DNA sequencing, hybridization and phylogenetic analyses to investigate the genetic diversity of 30 IncP-9 plasmids as well as the possibility of recombination between plasmids belonging to this family.
View Article and Find Full Text PDFThe ParB family partitioning protein, KorB, of plasmid RK2 is central to a regulatory network coordinating replication, maintenance and transfer genes. Previous immunofluorescence microscopy indicated that the majority of KorB is localized in plasmid foci. The 12 identified KorB binding sites on RK2 are differentiated by: position relative to promoters; binding strength; and cooperativity with other repressors and so the distribution of KorB may be sequestered around a sub-set of sites.
View Article and Find Full Text PDFType VI secretion is a newly described mechanism for protein transport across the cell envelope of Gram-negative bacteria. Components that have been partially characterised include an IcmF homologue, the ATPase ClpV, a regulatory FHA domain protein and the secreted VgrG and Hcp proteins. Type VI secretion is clearly a key virulence factor for some important pathogenic bacteria and has been implicated in the translocation of a potential effector protein into eukaryotic cells by at least one organism (Vibrio cholerae).
View Article and Find Full Text PDFThe minimal replicon from IncP-9 plasmid pM3, consisting of oriV and rep, is able to replicate in Pseudomonas putida but not in Escherichia coli, unless production of Rep protein is increased. The Rep protein, at 20kDa, is the smallest replication protein so far identified for a theta replicating plasmid. Rep was purified and shown to bind in three blocks across the oriV region that do not correlate with a single unique binding sequence.
View Article and Find Full Text PDFIncP-9 plasmids are common in Pseudomonas species and can be transferred to other Gram-negative eubacteria but tend not to be stably maintained outside their natural host genus. A 1.3 kb ori V-rep fragment from IncP-9 plasmid pM3 was sufficient for autonomous replication in Pseudomonas putida but not in Escherichia coli.
View Article and Find Full Text PDFKorB, encoded by plasmid RK2, belongs to the ParB family of active partitioning proteins. It binds to 12 operators on the RK2 genome and was previously known to repress promoters immediately adjacent to operators O(B)1, O(B)10 and O(B)12 (proximal) or up to 154 bp away (distal) from O(B)2, O(B)9 and O(B)11. To achieve strong repression, KorB requires a cooperative interaction with one of two other plasmid-encoded repressors, KorA or TrbA.
View Article and Find Full Text PDFA network of circuits, with KorB and TrbA as key regulators, controls genes for conjugative transfer of broad host range plasmid RK2. To assess the importance of the TrbA regulon, mutational analysis was applied to the TrbA operator at the trbB promoter and then to other TrbA-regulated promoters in the tra region. All identified TrbA operators are submaximal; in the case of trbBp, a G to A transition that made the operator core a perfect palindrome increased repression by about 50% compared to the wild type.
View Article and Find Full Text PDF