An efficient synthesis of cyclohexenes has been achieved from easily accessible tetrahydropyrans via a tandem 1,5-hydride shift-aldol condensation. We discovered that readily available aluminium reagents, e.g.
View Article and Find Full Text PDFAn atom-economical methodology to access substituted acyl-cyclohexenes from pentamethylacetophenone and 1,5-diols is described. This process is catalyzed by an iridium(I) catalyst in conjunction with a bulky electron rich phosphine ligand (CataCXium A) which favors acceptorless dehydrogenation over conjugate reduction to the corresponding cyclohexane. The reaction produces water and hydrogen gas as the sole byproducts and a wide range of functionalized acyl-cyclohexene products can be synthesized using this method in very high yields.
View Article and Find Full Text PDFThis Review summarizes advances in fluorination by C(sp )-H and C(sp )-H activation. Transition-metal-catalyzed approaches championed by palladium have allowed the installation of a fluorine substituent at C(sp ) and C(sp ) sites, exploiting the reactivity of high-oxidation-state transition-metal fluoride complexes combined with the use of directing groups (some transient) to control site and stereoselectivity. The large majority of known methods employ electrophilic fluorination reagents, but methods combining a nucleophilic fluoride source with an oxidant have appeared.
View Article and Find Full Text PDF