T cells are essential for a healthy life, performing continuously: immune surveillance, recognition, protection, activation, suppression, assistance, eradication, secretion, adhesion, migration, homing, communications, and additional tasks. This paper describes five aspects of normal beneficial T cells in the healthy or diseased brain. First, normal beneficial T cells are essential for normal healthy brain functions: cognition, spatial learning, memory, adult neurogenesis, and neuroprotection.
View Article and Find Full Text PDFFront Immunol
February 2022
Epilepsy affects ~50 million people. In ~30% of patients the etiology is unknown, and ~30% are unresponsive to anti-epileptic drugs. Intractable epilepsy often leads to multiple seizures daily or weekly, lasting for years, and accompanied by cognitive, behavioral, and psychiatric problems.
View Article and Find Full Text PDFT cells of aged people, and of patients with either cancer or severe infections (including COVID-19), are often exhausted, senescent and dysfunctional, leading to increased susceptibilities, complications and mortality. Neurotransmitters and Neuropeptides bind their receptors in T cells, and induce multiple beneficial T cell functions. Yet, T cells of different people vary in the expression levels of Neurotransmitter and Neuropeptide receptors, and in the magnitude of the corresponding effects.
View Article and Find Full Text PDFT cells are essential for eradicating microorganisms and cancer and for tissue repair, have a pro-cognitive role in the brain, and limit Central Nervous System (CNS) inflammation and damage upon injury and infection. However, in aging, chronic infections, acute SARS-CoV-2 infection, cancer, chronic stress, depression and major injury/trauma, T cells are often scarce, exhausted, senescent, impaired/biased and dysfunctional. People with impaired/dysfunctional T cells are at high risk of infections, cancer, other diseases, and eventually mortality, and become multi-level burden on other people, organizations and societies.
View Article and Find Full Text PDFNodding syndrome (NS) is a devastating and enigmatic childhood epilepsy. NS is accompanied by multiple neurological impairments and neuroinflammation, and associated with the parasite Onchocerca volvulus (Ov) and other environmental factors. Moreover, NS seems to be an 'Autoimmune Epilepsy' since: 1.
View Article and Find Full Text PDFNodding Syndrome (NS) is a fatal pediatric epilepsy of unknown etiology, accompanied by multiple neurological impairments, and associated with Onchocerca volvulus (Ov), malnutrition, war-induced trauma, and other insults. NS patients have neuroinflammation, and ~50% have cross-reactive Ov/Leiomodin-1 neurotoxic autoimmune antibodies. RESULTS: Studying 30 South Sudanese NS patients and a similar number of healthy subjects from the same geographical region, revealed autoimmune antibodies to 3 extracellular peptides of ionotropic glutamate receptors in NS patients: AMPA-GluR3B peptide antibodies (86%), NMDA-NR1 peptide antibodies (77%) and NMDA-NR2 peptide antibodies (87%) (in either 1:10, 1:100 or 1:1000 serum dilution).
View Article and Find Full Text PDFActivated T cells are pathological in various autoimmune and inflammatory diseases including Psoriasis, and also in graft rejection and graft-versus-host-disease. In these pathological conditions, selective silencing of activated T cells through physiological receptors they express remains a clinical challenge. In our previous studies we found that activation of dopamine receptors (DRs) in resting human T cells activates these cells, and induces by itself many beneficial T cell functions.
View Article and Find Full Text PDFHLA-B*15:539 differs from HLA-B*15:151 by two nucleotide substitutions.
View Article and Find Full Text PDFDopamine is a key neurotransmitter that induces critical effects in the nervous system and in many peripheral organs, via 5 dopamine receptors (DRs): D1R-D5R. Dopamine also induces many direct and very potent effects on many DR-expressing immune cells, primarily T cells and dendritic cells. In this review, we focus only on dopamine receptors, effects and production in T cells.
View Article and Find Full Text PDFGlutamate is the major excitatory neurotransmitter in the nervous system, where it induces multiple beneficial and essential effects. Yet, excess glutamate, evident in a kaleidoscope of acute and chronic pathologies, is absolutely catastrophic, since it induces excitotoxicity and massive loss of brain function. Both the beneficial and the detrimental effects of glutamate are mediated by a large family of glutamate receptors (GluRs): the ionotropic glutamate receptors (iGluRs) and the metabotropic glutamate receptors (mGluRs), expressed by most/all cells of the nervous system, and also by many non-neural cells in various peripheral organs and tissues.
View Article and Find Full Text PDFTNFα is a very potent and pleiotropic pro-inflammatory cytokine, essential to the immune system for eradicating cancer and microorganisms, and to the nervous system, for brain development and ongoing function. Yet, excess and/or chronic TNFα secretion causes massive tissue damage in autoimmune, inflammatory and neurological diseases and injuries. Therefore, many patients with autoimmune/inflammatory diseases receive anti-TNFα medications.
View Article and Find Full Text PDFDopamine, a principal neurotransmitter, deserves upgrading to 'NeuroImmunotransmitter' thanks to its multiple, direct and powerful effects on most/all immune cells. Dopamine by itself is a potent activator of resting effector T cells (Teffs), via two independent ways: direct Teffs activation, and indirect Teffs activation by suppression of regulatory T cells (Tregs). The review covers the following findings: (i) T cells express functional dopamine receptors (DRs) D1R-D5R, but their level and function are dynamic and context-sensitive, (ii) DR membranal protein levels do not necessarily correlate with DR mRNA levels, (iii) different T cell types/subtypes have different DR levels and composition and different responses to dopamine, (iv) autoimmune and pro-inflammatory T cells and T cell leukaemia/lymphoma also express functional DRs, (v) dopamine (~10(-8) M) activates resting/naive Teffs (CD8(+) >>>CD4(+) ), (vi) dopamine affects Th1/Th2/Th17 differentiation, (vii) dopamine inhibits already activated Teffs (i.
View Article and Find Full Text PDFGlutamate is the major excitatory neurotransmitter of the Central Nervous System (CNS), and it is crucially needed for numerous key neuronal functions. Yet, excess glutamate causes massive neuronal death and brain damage by excitotoxicity--detrimental over activation of glutamate receptors. Glutamate-mediated excitotoxicity is the main pathological process taking place in many types of acute and chronic CNS diseases and injuries.
View Article and Find Full Text PDFIn previous studies we found that several Neurotransmitters and Neuropeptides among them: Glutamate, Dopamine, Gonadotropin-releasing-hormone (GnRH) I and II, Somatostatin, CGRP and Neuropeptide Y, can each by itself, at low physiological concentration (~10 nM) bind its receptors in human T cells and trigger several key T cell functions. These findings showed that the nervous system, via Neurotransmitters and Neuropeptides, can 'talk' directly to the immune system, and stimulate what we coined 'Nerve-Driven Immunity': immune responses dictated by the nervous system. In various human cancers, the immune system of the patients, and their T cells in particular, are not functioning well enough against the cancer due to several reasons, among them the suppressive effects on the immune system induced by: (1) the cancer itself, (2) the chemotherapy and radiotherapy, (3) the ongoing/chronic stress, anxiety, depression and pain felt by the cancer patients.
View Article and Find Full Text PDFObjective: Anti-GluR3B antibodies (GluR3B Ab's), directed against peptide B/aa372-395 of GluR3 subunit of glutamate/AMPA receptors, are found in ∼35% of epilepsy patients, activate glutamate/AMPA receptors, evoke ion currents, kill neurons and damage the brain. We recently found that GluR3B Ab's also associate with neurological/psychiatric/behavioral abnormalities in epilepsy patients. Here we asked if GluR3B Ab's could be produced in DBA/2J mice, and also modulate seizure threshold and/or cause behavioral/motor impairments in these mice.
View Article and Find Full Text PDFGlutamate is the most important excitatory neurotransmitter of the nervous system, critically needed for the brain's development and function. Glutamate has also a signaling role in peripheral organs. Herein, we discuss glutamate receptors (GluRs) and glutamate-induced direct effects on human T cells.
View Article and Find Full Text PDFAntibodies (Ab's) to glutamate receptors, directed specifically against AMPA receptors subunit 3 peptide B (i.e. GluR3 amino acids 372-395), named GluR3B Ab's, can by themselves activate GluR3-containing glutamate/AMPA receptors, evoke ion currents via the receptor's ion channel, kill neurons and damage the brain.
View Article and Find Full Text PDFGlutamate is the major excitatory neurotransmitter of the nervous system. We previously found that glutamate activates normal human T-cells, inducing their adhesion and chemotaxis, via its glutamate receptors of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) subtype 3 (GluR3) expressed in these cells. Here, we discovered that human T-leukemia (Jurkat) and cutaneous sezary T-lymphoma (HuT-78) cells also express high levels of GluR3.
View Article and Find Full Text PDFCurr Opin Pharmacol
August 2008
Glutamate is the major excitatory CNS neurotransmitter. Glutamate receptor autoantibodies have now been called to our attention, as they are found in many patients with epilepsy, systemic lupus erythematosus (SLE) and encephalitis, and can unquestionably cause brain damage. AMPA GluR3 autoantibodies have been found thus far in 27% of patients with different epilepsies, while NMDA NR2A or NR2B autoantibodies, some of which cross-react with double-stranded DNA, have been detected in 30% of SLE patients, with or without neuropsychiatric impairments.
View Article and Find Full Text PDFCurr Opin Pharmacol
August 2008
Neurotransmitters are traditionally viewed as nerve-secreted molecules that trigger or inhibit neuronal functions. Yet, neurotransmitters bind also their neurotransmitter receptors in T-cells and directly activate or suppress T-cell functions. This review focuses only on the activating effects of neurotransmitters on T-cells, primarily naïve/resting cells, and covers dopamine, glutamate, serotonin, and few neuropeptides: GnRH-I, GnRH-II, substance P, somatostatin, CGRP, and neuropeptide Y.
View Article and Find Full Text PDFBackground And Aim: Local anesthetics which preferentially interact with voltage-gated sodium channels (VGSCs) were shown to have a clinical beneficial effect in ulcerative colitis and to regulate the secretion of inflammatory mediators from intestinal epithelial cells. However, expression of VGSCs in epithelial cells was not demonstrated. Herein we assessed whether intestinal epithelial cells express VGSCs.
View Article and Find Full Text PDFA case of a young woman who suffers from refractory epilepsy in the form of Rasmussen encephalitis and acute intermittent porphyria is presented. The patient developed refractory partial seizures with progressive hemispheric atrophy in the first decade. Both her serum and cerebrospinal fluid contained significantly elevated levels of anti-GluR3B antibodies.
View Article and Find Full Text PDFThe majority of resting normal human T cells, like neuronal cells, express functional receptors for glutamate (the major excitatory neurotransmitter in the CNS) of the ionotropic alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-receptor subtype 3 (GluR3). Glutamate by itself ( approximately 10 nM) activates key T cell functions, including adhesion to fibronectin and laminin and chemotactic migration toward CXCL12/stromal cell-derived factor 1. In this study, we found by GluR3-specific immunostaining, flow cytometry, and Western blots that GluR3 cell surface expression decreases dramatically following TCR activation of human T cells.
View Article and Find Full Text PDF