We have shown that the molecular conformation of a protein at an interface can be probed spatially using time-resolved evanescent wave-induced fluorescence spectroscopic (TREWIFS) techniques. Specifically, by varying the penetration depth of the evanescent field, variable-angle TREWIFS, coupled with variable-angle evanescent wave-induced time-resolved fluorescence anisotropy measurements, allow us to monitor how fluorescence intensity and fluorescence depolarization vary normal to an interface as a function of time after excitation. We have applied this technique to the study of bovine serum albumin (BSA) complexed noncovalently with the fluorophore 1-anilinonaphthalene-8-sulfonic acid.
View Article and Find Full Text PDF