In medicinal chemistry, purification and characterization of organic compounds is an ever-growing challenge, with an increasing number of compounds being synthesized at a decreased scale of preparation. In response to this trend, we developed a parallel medicinal chemistry (PMC)-tailored platform, coupling automated purification to mass spectrometry (MS) and nuclear magnetic resonance spectroscopy (NMR) on a range of synthetic scales (∼3.0-75.
View Article and Find Full Text PDFIn 2022, 23 new small molecule chemical entities were approved as drugs by the United States FDA, European Union EMA, Japan PMDA, and China NMPA. This review describes the synthetic approach demonstrated on largest scale for each new drug based on patent or primary literature. The synthetic routes highlight practical methods to construct molecules, sometimes on the manufacturing scale, to access the new drugs.
View Article and Find Full Text PDFEach year, new drugs are introduced to the market, representing structures that have affinity for biological targets implicated in human diseases and conditions. These new chemical entities (NCEs), particularly small molecules and antibody-drug conjugates, provide insight into molecular recognition and serve as potential leads for the design of future medicines. This annual review is part of a continuing series highlighting the most likely process-scale synthetic approaches to 35 NCEs that were first approved anywhere in the world during 2021.
View Article and Find Full Text PDFNew drugs introduced to the market are privileged structures that have affinities for biological targets implicated in human diseases and conditions. These new chemical entities (NCEs), particularly small molecules and antibody-drug conjugates (ADCs), provide insight into molecular recognition and simultaneously function as leads for the design of future medicines. This Review is part of a continuing series presenting the most likely process-scale synthetic approaches to 44 new chemical entities approved for the first time anywhere in the world during 2020.
View Article and Find Full Text PDFIncreasing saturation (Fsp) remains a central strategy in the optimization of properties of molecules during drug discovery. Here, we describe a versatile and operationally simple one-pot procedure for accomplishing this goal a nucleophilic aromatic substitution-decarboxylation sequence to construct C(sp)-C(sp) bonds. The method is tolerant of a variety of biologically privileged moieties and has been demonstrated in a library format.
View Article and Find Full Text PDFNew drugs introduced to the market are privileged structures having affinities for biological targets implicated in human diseases and conditions. These new chemical entities (NCEs), particularly small molecules and antibody-drug conjugates, provide insight into molecular recognition and simultaneously function as leads for the design of future medicines. This review is part of a continuing series presenting the most likely process-scale synthetic approaches to 40 NCEs approved for the first time anywhere in the world in 2019.
View Article and Find Full Text PDFHeterobifunctional chimeric degraders are a class of ligands that recruit target proteins to E3 ubiquitin ligases to drive compound-dependent protein degradation. Advancing from initial chemical tools, protein degraders represent a mechanism of growing interest in drug discovery. Critical to the mechanism of action is the formation of a ternary complex between the target, degrader and E3 ligase to promote ubiquitination and subsequent degradation.
View Article and Find Full Text PDFNew drugs introduced to the market every year represent privileged structures for particular biological targets. These new chemical entities (NCEs) provide insight into molecular recognition while serving as leads for designing future new drugs. This annual review describes the most likely process-scale synthetic approaches to 39 new chemical entities approved for the first time globally in 2018.
View Article and Find Full Text PDFNew drugs introduced to the market every year represent privileged structures for particular biological targets. These new chemical entities (NCEs) provide insight into molecular recognition while serving as leads for designing future new drugs. This annual review describes the most likely process-scale synthetic approaches to 31 new chemical entities approved for the first time globally in 2017.
View Article and Find Full Text PDFNew drugs introduced to the market every year represent privileged structures for particular biological targets. These new chemical entities provide insight into molecular recognition while serving as leads for designing future new drugs. This annual review describes the most likely process-scale synthetic approaches to 19 new chemical entities that were approved for the first time in 2016.
View Article and Find Full Text PDFNew drugs introduced to the market every year represent privileged structures for particular biological targets. These new chemical entities (NCEs) provide insight into molecular recognition while serving as leads for designing future new drugs. This annual review describes the most likely process-scale synthetic approaches to 29 new chemical entities (NCEs) that were approved for the first time in 2015.
View Article and Find Full Text PDFThe tubulysin class of natural products has attracted much attention from the medicinal chemistry community due to its potent cytotoxicity against a wide range of human cancer cell lines, including significant activity in multidrug-resistant carcinoma models. As a result of their potency, the tubulysins have become an important tool for use in targeted therapy, being widely pursued as payloads in the development of novel small molecule drug conjugates (SMDCs) and antibody-drug conjugates (ADCs). A structure-based and parallel medicinal chemistry approach was applied to the synthesis of novel tubulysin analogues.
View Article and Find Full Text PDFAs part of our efforts to develop new classes of tubulin inhibitor payloads for antibody-drug conjugate (ADC) programs, we developed a tubulysin ADC that demonstrated excellent in vitro activity but suffered from rapid metabolism of a critical acetate ester. A two-pronged strategy was employed to address this metabolism. First, the hydrolytically labile ester was replaced by a carbamate functional group resulting in a more stable ADC that retained potency in cellular assays.
View Article and Find Full Text PDFThe total synthesis of the Strychnos alkaloid (±)-minfiensine was achieved via an intramolecular amidofuran Diels-Alder cycloaddition/rearrangement followed by an iminium ion/cyclization cascade sequence. This domino process provides for a rapid access to the unique 1,2,3,4-tetrahydro-9a,4a-iminoethanocarbazole core structure found in the alkaloid minfiensine (2). In this paper, the full account of our synthetic study is described, highlighting the successful application of the cascade sequence to form the A/B/C/D rings of (±)-minfiensine (2) in high yield.
View Article and Find Full Text PDFNew drugs introduced to the market every year represent privileged structures for particular biological targets. These new chemical entities (NCEs) provide insight into molecular recognition and also serve as leads for designing future new drugs. This annual review covers the synthesis of thirty-seven NCEs that were approved for the first time in 2014 and one drug which was approved in 2013 and was not covered in a previous edition of this review.
View Article and Find Full Text PDFNew drugs introduced to the market every year represent privileged structures for particular biological targets. These new chemical entities (NCEs) provide insight into molecular recognition and also serve as leads for designing future new drugs. This annual review covers the synthesis of twenty-four NCEs that were approved for the first time in 2013 and two 2012 drugs which were not covered during the previous edition of this review.
View Article and Find Full Text PDFDolastatin 10 is a powerful antineoplastic agent and microtubule inhibitor that was discovered by Pettit et al. and published in 1987. Since then, many research groups have engaged in SAR studies of synthetic analogues, termed "auristatins".
View Article and Find Full Text PDFAuristatins, synthetic analogues of the antineoplastic natural product Dolastatin 10, are ultrapotent cytotoxic microtubule inhibitors that are clinically used as payloads in antibody-drug conjugates (ADCs). The design and synthesis of several new auristatin analogues with N-terminal modifications that include amino acids with α,α-disubstituted carbon atoms are described, including the discovery of our lead auristatin, PF-06380101. This modification of the peptide structure is unprecedented and led to analogues with excellent potencies in tumor cell proliferation assays and differential ADME properties when compared to other synthetic auristatin analogues that are used in the preparation of ADCs.
View Article and Find Full Text PDFNew drugs introduced to the market every year represent a privileged structure for a particular biological target. These new chemical entities (NCEs) provide insights into molecular recognition and also serve as leads for designing future new drugs. This review covers the synthesis of twenty-six NCEs that were launched or approved worldwide in 2012 and two additional drugs which were launched at the end of 2011.
View Article and Find Full Text PDFDyotropic rearrangements of fused, tricyclic β-lactones are described that proceed via unprecedented stereospecific, 1,2-acyl migrations delivering bridged, spiro-γ-butyrolactones. A unique example of this dyotropic process involves a fused bis-lactone possessing both β- and δ-lactone moieties which enabled rapid access to the core structures of curcumanolide A and curcumalactone. Our current mechanistic understanding of the latter dyotropic process, based on computational studies, is also described.
View Article and Find Full Text PDFQuantum chemical computations (B3LYP/6-31+G(d,p)) were applied to examine the mechanisms of dyotropic rearrangements of spirolactones in order to assess whether these reactions are concerted. Mechanistic experiments, designed on the basis of the results of these calculations, support the conclusions derived from theory. In particular, Zn(II) salts or Brønsted acids induce stepwise dyotropic processes, whereas dyotropic rearrangements mediated by silyltriflates are concerted processes.
View Article and Find Full Text PDF2,4-Disubstituted pyrroles were synthesized by an oxidative rearrangement of a furanyl carbamate followed by sequential reaction of the resulting 5-methoxypyrrol-2(5H)-one with different alkyl lithiates. The final step of the procedure involves heating the ring opened 1-methoxy-5-oxopentylcarbamate with a primary amine.
View Article and Find Full Text PDFThe intramolecular Diels-Alder reaction of several amidofurans tethered onto a benzofuran ring was examined as a strategy for the synthesis of morphine. Bromo substitution on the furan ring did not provide sufficient activation to allow the cycloaddition to take place across the aromatic benzofuran. However, the presence of a large o-methylbenzyl group on the amido nitrogen atom causes the reactive s-trans conformation of the amidofuran to be highly populated, thereby facilitating its Diels-Alder cycloaddition across a tethered benzofuran.
View Article and Find Full Text PDF