Publications by authors named "Levente Herenyi"

Photosensitization has a wide range of applications in vastly distant fields. Three key components must be present at the same time to trigger the related photodynamic effect: light, the photosensitizer (PS) and oxygen. Irradiating the sensitizer leads to the formation of reactive oxygen species (ROS).

View Article and Find Full Text PDF

Objective: By modelling patient exposures of interventional procedures, this study compares the reduction of radiation detriment between Digital Variance Angiography (DVA) and Digital Subtraction Angiography (DSA).

Methods: The paper presents a retrospective risk assessment using an in-house developed tool on 107 patient exposures from a clinical trial of DVA used to diagnose peripheral arterial disease (PAD). DICOM exposure parameters were used to initiate the PENELOPE (PENetration and Energy LOss of Positrons and Electrons) Monte Carlo simulation, radiation quality and quantity, and irradiation geometry.

View Article and Find Full Text PDF

TMPyP is a porphyrin capable of DNA binding and used in photodynamic therapy and G-quadruplex stabilization. Despite its broad applications, TMPyP's effect on DNA nanomechanics is unknown. Here we investigated, by manipulating λ-phage DNA with optical tweezers combined with microfluidics in equilibrium and perturbation kinetic experiments, how TMPyP influences DNA nanomechanics across wide ranges of TMPyP concentration (5-5120 nM), mechanical force (0-100 pN), NaCl concentration (0.

View Article and Find Full Text PDF

The mechanism underlying allostery in hemoglobin (Hb) is still not completely understood. Various models describing the action of allosteric effectors on Hb function have been published in the literature. It has also been reported that some allosteric effectors-such as chloride ions, inositol hexaphosphate, 2,3-diphospho-glycerate and bezafibrate-considerably lower the oxygen affinity of Hb.

View Article and Find Full Text PDF

T7 phages are -infecting viruses that find and invade their target with high specificity and efficiency. The exact molecular mechanisms of the T7 infection cycle are yet unclear. As the infection involves mechanical events, single-particle methods are to be employed to alleviate the problems of ensemble averaging.

View Article and Find Full Text PDF

Tuberculosis is one of the top ten causes of death worldwide, and due to the appearance of drug-resistant strains, the development of new antituberculotic agents is a pressing challenge. Employing an in silico docking method, two coumaran (2,3-dihydrobenzofuran) derivatives-TB501 and TB515-were determined, with promising in vitro antimycobacterial activity. To enhance their effectiveness and reduce their cytotoxicity, we used liposomal drug carrier systems.

View Article and Find Full Text PDF

The outer membrane (OM) of Gram-negative bacteria is a complex asymmetric bilayer containing lipids, lipopolysaccharides (LPS) and proteins. While it is a mechanical and chemical barrier, it is also the primary surface of bacterial recognition processes that involve infection by and of the bacterium. Uncovering the mechanisms of these biological functions has been hampered by the lack of suitable model systems.

View Article and Find Full Text PDF

The development of advanced experimental methodologies, such as optical tweezers, scanning-probe and super-resolved optical microscopies, has led to the evolution of single-molecule biophysics, a field of science that allows direct access to the mechanistic detail of biomolecular structure and function. The extension of single-molecule methods to the investigation of particles such as viruses permits unprecedented insights into the behavior of supramolecular assemblies. Here we address the scope of viral exploration at the level of individual particles.

View Article and Find Full Text PDF

Single-molecule experiments provide unique insights into the mechanisms of biomolecular phenomena. However, because varying the concentration of a solute usually requires the exchange of the entire solution around the molecule, ligand-concentration-dependent measurements on the same molecule pose a challenge. In the present work we exploited the fact that a diffusion-dependent concentration gradient arises in a laminar-flow microfluidic device, which may be utilized for controlling the concentration of the ligand that the mechanically manipulated single molecule is exposed to.

View Article and Find Full Text PDF

The photodynamic effect requires the simultaneous presence of light, photosensitizer (PS) and molecular oxygen. In this process, the photoinduced damage of cells is caused by reactive oxygen species (ROS). Besides DNA, the other target of ROS is the membranes, separating internal compartments in living cells.

View Article and Find Full Text PDF

The living cell is characterized by a myriad of parallel intracellular transport processes. Simultaneously capturing their global features across multiple temporal and spatial scales is a nearly unsurmountable task. Here we present a method that enables the microscopic imaging of the entire spectrum of intracellular transport on a broad time scale without the need for prior labeling.

View Article and Find Full Text PDF

Viruses are nanoscale infectious agents which may be inactivated by heat treatment. The global molecular mechanisms of virus inactivation and the thermally induced structural changes in viruses are not fully understood. In this study, we measured the heat-induced changes in the properties of T7 bacteriophage particles exposed to a two-stage (65°C and 80°C) thermal effect, by using atomic force microscopy (AFM)-based nanomechanical and topographical measurements.

View Article and Find Full Text PDF

The general question by what mechanism an "effector" molecule and the hemes of hemoglobin interact over widely separated intramolecular distances to change the oxygen affinity has been extensively investigated, and still has remained of central interest. In the present work we were interested in clarifying the general role of the protein matrix and its dynamics in the regulation of human adult hemoglobin (HbA). We used a spectroscopy approach that yields the compressibility (κ) of the protein matrix around the hemes of the subunits in HbA and studied how the binding of heterotropic allosteric effectors modify this parameter.

View Article and Find Full Text PDF

The foremost event of bacteriophage infection is the ejection of genomic material into the host bacterium after virus binding to surface receptor sites. How ejection is triggered is yet unknown. Here we show, in single mature T7 phage particles, that tapping the capsid wall with an oscillating atomic-force-microscope cantilever triggers rapid DNA ejection via the tail complex.

View Article and Find Full Text PDF

Recently, we have characterized the DNA and nucleoprotein (NP) binding of bis(4-N-methylpyridyl)-15,20-di(4-carboxyphenyl)porphyrin (BMPCP) and meso-tri(4-N-methylpyridyl)-mono(4-carboxyphenyl)porphyrin (TMPCP) and their tetrapeptide conjugates (BMPCP-4P and TMPCP-4P, respectively). In this work, we investigated the interaction of TMPCP conjugated to the tetrapeptide branches of branched chain polymeric polypeptide with poly-L-lysine backbone (AK) with DNA or NP using spectroscopic methods. Analysis of absorption spectra revealed the external binding but no intercalation of TMPCP-AK to DNA.

View Article and Find Full Text PDF

Viruses are nanoscale infectious agents constructed of a proteinaceous capsid that protects the packaged genomic material. Nanoindentation experiments using atomic force microscopy have, in recent years, provided unprecedented insight into the elastic properties, structural stability and maturation-dependent mechanical changes in viruses. However, the dynamics of capsid behavior are still unresolved.

View Article and Find Full Text PDF

Ongoing research on DNA binding of cationic porphyrin derivatives and their conjugates is a subject of growing interest because of their possible DNA binding and demonstrated biological properties. In this study nucleoprotein binding of tri-cationic meso-tri(4-N-methylpyridyl)-mono-(4-carboxyphenyl)porphyrin (TMPCP) and tetrapeptides conjugated TMPCP (TMPCP-4P) and bi-cationic meso-5,10-bis(4-N-methylpyridyl)-15,20-di-(4-carboxyphenyl)porphyrin (BMPCP-4P2) was investigated with comprehensive spectroscopic methods. The key observation is that tetrapeptide-conjugates of cationic porphyrins with two or three positive charges bind to encapsidated DNA in T7 phage nucleoprotein complex.

View Article and Find Full Text PDF

Protein function is governed by the underlying conformational dynamics of the molecule. The experimental and theoretical work leading to contemporary understanding of enzyme dynamics was mostly restricted to the large-scale movements of single-domain proteins. Collective movements resulting from a regulatory interplay between protein domains is often crucial for enzymatic activity.

View Article and Find Full Text PDF

Application of porphyrins as photosensitizers is based on their light-triggered generation of reactive oxygen species (ROS) that may cause oxidative tissue damage and ultimately kill cells. Cellular membranes are the action grounds of many sensitizers due to their hydrophobic or amphiphilic character as well as the location of many of the targets attacked by ROS. Hence, the binding ability and location of porphyrins in liposomes as simple models of cellular membranes are of outstanding interest.

View Article and Find Full Text PDF

Recently cationic porphyrin-peptide conjugates were synthesized to enhance the cellular uptake of porphyrins or deliver the peptide moiety to the close vicinity of nucleic acids. DNA binding of such compounds was not systematically studied yet. We synthesized two new porphyrin-tetrapeptide conjugates which can be considered as a typical monomer unit corresponding to the branches of porphyrin-polymeric branched chain polypeptide conjugates.

View Article and Find Full Text PDF

Conformational dynamics of proteins is of fundamental importance in their physiological functions. The exact mechanisms and determinants of protein motions, including the regulatory interplay between protein and solvent motions, are not yet fully understood. In the present work, the thermal activation of phosphorescence quenching was measured in oxygen-saturated aqueous protein solutions to explore protein dynamics in the millisecond range.

View Article and Find Full Text PDF

We studied the complexation of meso-tetrakis(4-N-methylpyridyl)porphyrin (TMPyP) with HeLa nucleosomes and compared it to our earlier results on T7 phage nucleoprotein complex (NP) and isolated DNA. To identify binding modes and relative concentrations of the bound TMPyP forms, the porphyrin absorption spectra were analyzed at various base pair/porphyrin ratios. Spectral decomposition and circular dichroism measurements proved that the two main binding modes of TMPyP, i.

View Article and Find Full Text PDF

Binding of photosensitizers to target cells is a crucial step during the photodynamic effect. Sensitizer distribution is a good indication of whether the chemical is a good candidate for perturbing cell membrane integrity. Hence, the photophysical properties of porphyrinoid sensitizers in microheterogeneous systems such as liposomes are of outstanding interest.

View Article and Find Full Text PDF

The risk of transmitting infections by blood transfusion has been substantially reduced. However, alternative methods for inactivation of pathogens in blood and its components are needed. Application of photoactivated cationic porphyrins can offer an approach to remove non-enveloped viruses from aqueous media.

View Article and Find Full Text PDF

One of the most intriguing predictions of energy landscape models is the existence of non-exponential protein folding kinetics caused by hierarchical structures in the landscapes. Here we provide the strongest evidence so far of such hierarchy and determine the time constants and weights of the kinetic components of the suggested hierarchic energy landscape. To our knowledge, the idea of hierarchical folding energy barriers has never been tested over such a broad timescale.

View Article and Find Full Text PDF