ACS Appl Mater Interfaces
February 2024
Mixed matrix membranes (MMMs), incorporating graphene and graphene oxide structural fragments, have emerged as promising materials for challenging gas separation processes. What remains unclear is the actual molecular mechanism responsible for the enhanced permeability and perm-selectivity of these materials. With the fully atomistic models still unable to handle the required time and length scales, here, we employ a simple qualitative model based on the lattice representation of the physical system and dynamic mean field theory.
View Article and Find Full Text PDFThe Robeson bound is a theoretical limit that applies to kinetics-driven membrane separations of gas mixtures. However, this bound does not apply to sorption-driven membrane processes such as CO2/N2 separation, which lacks a theoretical explanation. As a result, we are uncertain about the factors that control the limiting behavior of sorption-driven separations.
View Article and Find Full Text PDFGrand Canonical Monte Carlo is an important method for performing molecular-level simulations and assisting the study and development of nanoporous materials for gas capture applications. These simulations are based on the use of force fields and partial charges to model the interaction between the adsorbent molecules and the solid framework. The choice of the force field parameters and partial charges can significantly impact the results obtained, however, there are very few databases available to support a comprehensive impact evaluation.
View Article and Find Full Text PDFThe heat capacity of a material is a fundamental property of great practical importance. For example, in a carbon capture process, the heat required to regenerate a solid sorbent is directly related to the heat capacity of the material. However, for most materials suitable for carbon capture applications, the heat capacity is not known, and thus the standard procedure is to assume the same value for all materials.
View Article and Find Full Text PDFWe explore the applicability of the lattice model and dynamic mean field theory as a computationally efficient tool to study transport across heterogeneous porous media, such as mixed matrix membranes. As a starting point and to establish some basic definitions of properties analogous to those in the off-lattice systems, we consider transport across simple models of porous materials represented by a slit pore in a chemical potential gradient. Using this simple model, we investigate the distribution of density and flux under steady state conditions, define the permeability across the system, and explore how this property depends on the length of the pore and the solid-fluid interactions.
View Article and Find Full Text PDFComputational screening methods have changed the way new materials and processes are discovered and designed. For adsorption-based gas separations and carbon capture, recent efforts have been directed toward the development of multiscale and performance-based screening workflows where we can go from the atomistic structure of an adsorbent to its equilibrium and transport properties at different scales, and eventually to its separation performance at the process level. The objective of this work is to review the current status of this new approach, discuss its potential and impact on the field of materials screening, and highlight the challenges that limit its application.
View Article and Find Full Text PDFPhys Chem Chem Phys
December 2019
Facilitated transport membranes (FTMs) constitute an emerging class of polymer materials with promising properties for carbon capture applications. The key feature of these membranes is the presence of chemical groups which, in the presence of water, engage in a reaction with dissolved carbon dioxide, thus enhancing the permeability and selectivity of the membrane. Currently, little is known about the organization of these membranes on a molecular level, reaction mechanisms and detailed chemical balance, transport of water, ion species and dissolved gas molecules.
View Article and Find Full Text PDFWe describe a general model to explore responsive adsorption processes in flexible porous materials. This model combines mean field formalism of the osmotic potential, classical density functional theory of adsorption in slit pore models and generic potential functions which represent the Helmholtz free energy landscape of a porous system. Using this model, we focus on recreating flexible adsorption phenomena observed in prototypical metal-organic frameworks, especially the recently discovered effect of negative gas adsorption (NGA).
View Article and Find Full Text PDFConsistent adsorption characterization of metal-organic frameworks (MOFs) is imperative for their wider adoption in industry and practical applications. Current approaches are based on the conventional intuitive representation of MOF pore space as a regular network of pore compartments (cages and channels), adsorption in which occurs independently according to their geometric dimensions. Here, we demonstrate that this conventional approach is unable to describe even qualitatively the shape of Ar adsorption isotherms on hydrated and dehydrated Cu-BTC structures, one of the most well-known MOF materials.
View Article and Find Full Text PDFMetal-organic frameworks (MOFs) have emerged as versatile materials for applications ranging from gas separation and storage, catalysis, and sensing. The attractive feature of MOFs is that, by changing the ligand and/or metal, they can be chemically tuned to perform optimally for a given application. In most, if not all, of these applications one also needs a material that has a sufficient mechanical stability, but our understanding of how changes in the chemical structure influence mechanical stability is limited.
View Article and Find Full Text PDFSynthetic polymers, nanoparticles, and carbon-based materials have great potential in applications including drug delivery, gene transfection, in vitro and in vivo imaging, and the alteration of biological function. Nature and humans use different design strategies to create nanomaterials: biological objects have emerged from billions of years of evolution and from adaptation to their environment resulting in high levels of structural complexity; in contrast, synthetic nanomaterials result from minimalistic but controlled design options limited by the authors' current understanding of the biological world. This conceptual mismatch makes it challenging to create synthetic nanomaterials that possess desired functions in biological media.
View Article and Find Full Text PDFLigand-functionalized nanoparticles (NPs) are a promising platform for imaging and drug delivery applications. A number of recent molecular simulation and theoretical studies explored how these NPs interact with model lipid membranes. However, interactions between ligand-coated NPs leading to possible cooperative effects and association have not been investigated.
View Article and Find Full Text PDFThe definitions of absolute, excess and net adsorption in microporous materials are used to identify the correct limits at zero and infinite pressure. Absolute adsorption is shown to be the fundamental thermodynamic property and methods to determine the solid density that includes the micropore volume are discussed. A simple means to define when it is necessary to distinguish between the three definitions at low pressure is presented.
View Article and Find Full Text PDFIntracellular uptake of nanoparticles (NPs) may induce phase transitions, restructuring, stretching, or even complete disruption of the cell membrane. Therefore, NP cytotoxicity assessment requires a thorough understanding of the mechanisms by which these engineered nanostructures interact with the cell membrane. In this study, extensive Coarse-Grained Molecular Dynamics (MD) simulations are performed to investigate the partitioning of an anionic, ligand-decorated NP in model membranes containing dipalmitoylphosphatidylcholine (DPPC) phospholipids and different concentrations of cholesterol.
View Article and Find Full Text PDFOccasional, large amplitude flexibility in metal-organic frameworks (MOFs) is one of the most intriguing recent discoveries in chemistry and material science. Yet, there is at present no theoretical framework that permits the identification of flexible structures in the rapidly expanding universe of MOFs. Here, we propose a simple method to predict whether a MOF is flexible, based on treating it as a system of rigid elements, connected by hinges.
View Article and Find Full Text PDFWe employ coarse-grained molecular dynamics simulations to understand why certain interaction patterns on the surface of a nanoparticle promote its translocation through a lipid membrane. We demonstrate that switching from a random, heterogeneous distribution of hydrophobic and hydrophilic areas on the surface of a nanoparticle to even, homogeneous patterns substantially flattens the translocation free-energy profile and dramatically enhances permeation. We then proceed to construct a more detailed coarse-grained model of a nanoparticle with flexible hydrophobic and hydrophilic ligands arranged into striped domains.
View Article and Find Full Text PDFPhys Chem Chem Phys
November 2012
A simple protocol based on a lattice representation of the porous space is proposed to locate and characterize the free energy bottle-necks in rigid metal organic frameworks. As an illustration we apply this method to HKUST-1 to demonstrate that there are impassable free energy barriers for molecules of trinitrotoluene in this structure.
View Article and Find Full Text PDFIn this article we present a model for molecularly imprinted polymers, which considers both complexation processes in the pre-polymerization mixture and adsorption in the imprinted structures within a single consistent framework. As a case study we investigate MAA/EGDMA polymers imprinted with pyrazine and pyrimidine. A polymer imprinted with pyrazine shows substantial selectivity towards pyrazine over pyrimidine, thus exhibiting molecular recognition, whereas the pyrimidine imprinted structure shows no preferential adsorption of the template.
View Article and Find Full Text PDFIn this article, we focus on several types of interactions between lipid membranes and alpha-helical peptides, based on the distribution of hydrophobic and hydrophilic residues along the helix. We employ a recently proposed coarse-grained model MARTINI and test its ability to capture diverse types of behavior. MARTINI provides useful insights on the formation of barrel-stave and toroidal pores and on the relation between these two mechanisms.
View Article and Find Full Text PDFPolymerization in the presence of templates, followed by their consequent removal, leads to structures with cavities capable of molecular recognition. This molecular imprinting technology has been employed to create porous polymers with tailored selectivity for adsorption, chromatographic separations, sensing, and other applications. Performance of these materials crucially depends on the availability of highly selective binding sites.
View Article and Find Full Text PDFMolecularly imprinted polymers (MIPs) offer a unique opportunity to significantly advance volatile organic compound (VOC) sensing technologies and a number of other applications. However, the development of these applications using MIPs has been hindered by poor understanding of the microstructure of MIPs, geometry of binding sites, and the details of molecular recognition processes in these materials. This is further complicated by the vast number of optimization parameters such as building components and processing conditions.
View Article and Find Full Text PDFWe employ nonequilibrium molecular dynamics simulation to characterize the effective interactions between lysozyme molecules involved in the formation of two hydrophobic crystal contacts. We show that the effective interactions between crystal contacts do not exceed a few kT, the range of the attractive part of the potential is less than 4 angstroms, and, within this range, there is a significant depletion of water density between two protein contacts. Our findings highlight the different natures of protein crystallization and protein recognition processes.
View Article and Find Full Text PDFRecently, several families of promising porous materials have been proposed where the porous matrix forms in the presence of additional molecules or templates. These materials find applications in separations, sensing, catalysis, and other technologies. For these systems, it is important to understand the connectedness of the matrix species and the porous space.
View Article and Find Full Text PDF