YB-1 is a multifunctional DNA- and RNA-binding protein involved in cell proliferation, differentiation, and migration. YB-1 is a predominantly cytoplasmic protein that is transported to the nucleus in certain conditions, including DNA-damaging stress, transcription inhibition, and viral infection. In tumors, YB-1 nuclear localization correlates with high aggressiveness, multidrug resistance, and a poor prognosis.
View Article and Find Full Text PDFIn the absence of the scanning ribosomes that unwind mRNA coding sequences and 5'UTRs, mRNAs are likely to form secondary structures and intermolecular bridges. Intermolecular base pairing of non polysomal mRNAs is involved in stress granule (SG) assembly when the pool of mRNAs freed from ribosomes increases during cellular stress. Here, we unravel the structural mechanisms by which a major partner of dormant mRNAs, YB-1 (YBX1), unwinds mRNA secondary structures without ATP consumption by using its conserved cold-shock domain to destabilize RNA stem/loops and its unstructured C-terminal domain to secure RNA unwinding.
View Article and Find Full Text PDFThe RNA-binding protein Lin28 (Lin28a) is an important pluripotency factor that reprograms translation and promotes cancer progression. Although Lin28 blocks let-7 microRNA maturation, Lin28 also binds to a large set of cytoplasmic mRNAs directly. However, how Lin28 regulates the processing of many mRNAs to reprogram global translation remains unknown.
View Article and Find Full Text PDFY-box binding proteins (YB proteins) are DNA/RNA-binding proteins belonging to a large family of proteins with the cold shock domain. Functionally, these proteins are known to be the most diverse, although the literature hardly offers any molecular mechanisms governing their activities in the cell, tissue, or the whole organism. This review describes the involvement of YB proteins in RNA-dependent processes, such as mRNA packaging into mRNPs, mRNA translation, and mRNA stabilization.
View Article and Find Full Text PDFThe Y-box binding protein 1 (YB-1) is an RNA/DNA-binding protein regulating gene expression in the cytoplasm and the nucleus. Although mostly cytoplasmic, YB-1 accumulates in the nucleus under stress conditions. Its nuclear localization is associated with aggressiveness and multidrug resistance of cancer cells, which makes the understanding of the regulatory mechanisms of YB-1 subcellular distribution essential.
View Article and Find Full Text PDFThe mammalian target of rapamycin (mTOR) kinase is a well-known master regulator of growth-dependent gene expression in higher eukaryotes. Translation regulation is an important function of the mTORC1 pathway that controls the synthesis of many ribosomal proteins and translation factors. Housekeeping genes such as () are widely used as negative control genes in studies of growth-dependent translation.
View Article and Find Full Text PDFThe structural rearrangements accompanying mRNA during translation in mammalian cells remain poorly understood. Here, we discovered that YB-1 (YBX1), a major partner of mRNAs in the cytoplasm, forms a linear nucleoprotein filament with mRNA, when part of the YB-1 unstructured C-terminus has been truncated. YB-1 possesses a cold-shock domain (CSD), a remnant of bacterial cold shock proteins that have the ability to stimulate translation under the low temperatures through an RNA chaperone activity.
View Article and Find Full Text PDFBiochem Biophys Res Commun
November 2016
The DNA/RNA-binding protein YB-1 (Y-box binding protein 1) performs multiple functions both in the cytoplasm and the nucleus of the cell. Generally localized to the cytoplasm, under certain conditions YB-1 is translocated to the nucleus. Here we report for the first time a transport factor that mediates YB-1 nuclear import - transportin-1.
View Article and Find Full Text PDFMultifunctional Y-box binding protein 1 (YB-1) is actively studied as one of the components of cellular response to genotoxic stress. However, the precise role of YB-1 in the process of DNA repair is still obscure. In the present work we report for the first time new posttranslational modification of YB-1 - poly(ADP-ribosyl)ation, catalyzed by one of the main regulatory enzymes of DNA repair - poly(ADP-ribose)polymerase 1 (PARP1) in the presence of model DNA substrate carrying multiple DNA lesions.
View Article and Find Full Text PDFTranslation is tightly regulated in cells for keeping adequate protein levels, this task being notably accomplished by dedicated mRNA-binding proteins recognizing a specific set of mRNAs to repress or facilitate their translation. To select specific mRNAs, mRNA-binding proteins can strongly bind to specific mRNA sequences/structures. However, many mRNA-binding proteins rather display a weak specificity to short and redundant sequences.
View Article and Find Full Text PDFY-box binding protein 1 (YB-1) is widely known to participate in a multiple DNA and RNA processing events in the living cell. YB-1 is also regarded as a putative component of DNA repair. This possibility is supported by relocalization of YB-1 into the nucleus following genotoxic stress.
View Article and Find Full Text PDFThe multifunctional eukaryotic protein YB-1 (Y-box binding protein 1) plays a role in DNA reparation, transcription regulation, splicing, and mRNA translation, thereby participating in many crucial events in cells. Its effect is dependent mostly on its amount, and hence, on regulation of its synthesis. Published data on regulation of synthesis of YB-1 mediated by its mRNA 5' UTR, and specifically on the 5' UTR length and the presence of TOP-like motifs in this region, are contradictory.
View Article and Find Full Text PDFThe Y-box binding protein 1 (YB-1, YBX1) is a member of the family of DNA- and RNA-binding proteins with an evolutionarily ancient and conserved cold shock domain. It falls into a group of intrinsically disordered proteins that do not follow the classical rule 'one protein-one function' but introduce a novel principle stating that a disordered structure suggests many functions. YB-1 participates in a wide variety of DNA/RNA-dependent events, including DNA reparation, pre-mRNA transcription and splicing, mRNA packaging, and regulation of mRNA stability and translation.
View Article and Find Full Text PDFThe Y-box binding protein 1 (YB-1) is a DNA/RNA-binding nucleocytoplasmic shuttling protein whose regulatory effect on many DNA and RNA-dependent events is determined by its localization in the cell. We have shown previously that YB-1 is cleaved by 20S proteasome between E219 and G220, and the truncated N-terminal YB-1 fragment accumulates in the nuclei of cells treated with DNA damaging drugs. We proposed that appearance of truncated YB-1 in the nucleus may predict multiple drug resistance.
View Article and Find Full Text PDFYB-1 is a eukaryotic protein with numerous intra- and extracellular functions based on its ability to interact with RNA, DNA, and many proteins. In spite of achievements in studying its functions, regulation of YB-1 synthesis in the cell remains poorly understood. In the current study Western and Northern blotting were used to determine the amounts of YB-1 and YB-1 mRNA in rabbit organs and several cell lines.
View Article and Find Full Text PDFYB-1 is a major mRNP protein participating in the regulation of transcription and translation of a wide range of eukaryotic genes in many organisms probably due to its influence on mRNA packing into mRNPs. While the functional properties of YB-1 are extensively studied, little is known about its structural properties. In the present work we focused on studying its secondary structure, rigidity of its tertiary structure, compactness, and oligomerization in vitro by using far UV-CD, DSC, one-dimensional (1)H NMR, SAXS, sedimentation and FPLC.
View Article and Find Full Text PDFYB-1 is a multifunctional cold shock domain containing protein that is involved virtually in all DNA- and mRNA-dependent cellular events. Its amount is regulated at the level of both transcription and translation. We showed previously that translation of poly A(-) YB-1 mRNA in vitro is selectively controlled by two proteins, YB-1 and PABP, through their specific and competitive binding to a regulatory element (RE) within 3' UTR of this mRNA.
View Article and Find Full Text PDFYB-1, a multifunctional DNA- and RNA-binding nucleocytoplasmic protein, is involved in the majority of DNA- and mRNA-dependent events in the cell. It consists of three structurally different domains: its central cold shock domain has the structure of a β-barrel, while the flanking domains are predicted to be intrinsically disordered. Recently, we showed that YB-1 is capable of forming elongated fibrils under high ionic strength conditions.
View Article and Find Full Text PDFDNA glycosylases are key enzymes in the first step of base excision DNA repair, recognizing DNA damage and catalyzing the release of damaged nucleobases. Bifunctional DNA glycosylases also possess associated apurinic/apyrimidinic (AP) lyase activity that nick the damaged DNA strand at an abasic (or AP) site, formed either spontaneously or at the first step of repair. NEIL1 is a bifunctional DNA glycosylase capable of processing lesions, including AP sites, not only in double-stranded but also in single-stranded DNA.
View Article and Find Full Text PDFYB-1 is a DNA- and RNA-binding protein that regulates expression of many important genes. Its deficiency or excess may pose threats, including malignant cellular transformation and metastasis, which explains the necessity of strict control over its amount at every level. As we showed previously, the 3' untranslated region (UTR) of YB-1 mRNA contains a regulatory element specifically binding to YB-1 and PABP (PABPC1).
View Article and Find Full Text PDFFollowing exposure to various stresses (arsenite, UV, hyperthermia, and hypoxia), mRNAs are assembled into large cytoplasmic bodies known as "stress granules," in which mRNAs and associated proteins may be processed by specific enzymes for different purposes like transient storing, sorting, silencing, or other still unknown processes. To limit mRNA damage during stress, the assembly of micrometric granules has to be rapid, and, indeed, it takes only approximately 10-20 min in living cells. However, such a rapid assembly breaks the rules of hindered diffusion in the cytoplasm, which states that large cytoplasmic bodies are almost immobile.
View Article and Find Full Text PDFIncreased expression of the transcription/translation regulatory protein Y-box binding protein-1 (YB-1) is associated with cancer aggressiveness, particularly in breast carcinoma. Here we establish that YB-1 levels are elevated in invasive breast cancer cells and correlate with reduced expression of E-cadherin and poor patient survival. Enforced expression of YB-1 in noninvasive breast epithelial cells induced an epithelial-mesenchymal transition (EMT) accompanied by enhanced metastatic potential and reduced proliferation rates.
View Article and Find Full Text PDFThe interaction between the poly(A)-binding protein (PABP) and eukaryotic translational initiation factor 4G (eIF4G), which brings about circularization of the mRNA, stimulates translation. General RNA-binding proteins affect translation, but their role in mRNA circularization has not been studied before. Here, we demonstrate that the major mRNA ribonucleoprotein YB-1 has a pivotal function in the regulation of eIF4F activity by PABP.
View Article and Find Full Text PDFBackground: YB-1 is a major regulator of gene expression in eukaryotic cells. In addition to its role in transcription, YB-1 plays a key role in translation and stabilization of mRNAs.
Results: We show here that YB-1 interacts with tubulin and microtubules and stimulates microtubule assembly in vitro.