Publications by authors named "Lev A Matveev"

We propose a nonlinear stress-strain law to describe nonlinear elastic properties of biological tissues using an analogy with the derivation of nonlinear constitutive laws for cracked rocks. The derivation of such a constitutive equation has been stimulated by the recently developed experimental technique-quasistatic Compression Optical Coherence Elastography (C-OCE). C-OCE enables obtaining nonlinear stress-strain dependences relating the applied uniaxial compressive stress and the axial component of the resultant strain in the tissue.

View Article and Find Full Text PDF

For the most popular method of scan formation in Optical Coherence Tomography (OCT) based on plane-parallel scanning of the illuminating beam, we present a compact but rigorous K-space description in which the spectral representation is used to describe both the axial and lateral structure of the illuminating/received OCT signals. Along with the majority of descriptions of OCT-image formation, the discussed approach relies on the basic principle of OCT operation, in which ballistic backscattering of the illuminating light is assumed. This single-scattering assumption is the main limitation, whereas in other aspects, the presented approach is rather general.

View Article and Find Full Text PDF

Currently, optical biopsy technologies are being developed for rapid and label-free visualization of biological tissue with micrometer-level resolution. They can play an important role in breast-conserving surgery guidance, detection of residual cancer cells, and targeted histological analysis. For solving these problems, compression optical coherence elastography (C-OCE) demonstrated impressive results based on differences in the elasticity of different tissue constituents.

View Article and Find Full Text PDF

The recent impressive progress in Compression Optical Coherence Elastography (C-OCE) demonstrated diverse biomedical applications, comprising ophthalmology, oncology, etc. High resolution of C-OCE enables spatially resolved characterization of elasticity of rather thin (thickness < 1 mm) samples, which previously was impossible. Besides Young's modulus, C-OCE enables obtaining of nonlinear stress-strain dependences for various tissues.

View Article and Find Full Text PDF

The aims of this study are (i) to compare ultrasound strain elastography (US-SE) and compression optical coherence elastography (C-OCE) in characterization of elastically linear phantoms, (ii) to evaluate factors that can cause discrepancy between the results of the two elastographic techniques in application to real tissues, and (iii) to compare the results of US-SE and C-OCE in the differentiation of benign and malignant breast lesions. On 22 patients, we first used standard US-SE for assessment of breast cancer before and then after the lesion excision C-OCE was applied for intraoperative visualization of margins of the tumors and assessment of their type/grade using fresh lumpectomy specimens. For verification, the tumor grades and subtypes were determined histologically.

View Article and Find Full Text PDF

In this article, we offer a novel classification of progressive changes in the connective tissue of dermis in vulvar lichen sclerosus (VLS) relying on quantitative assessment of the second harmonic generation (SHG) signal received from formalin fixed and deparaffinized tissue sections. We formulate criteria for distinguishing four degrees of VLS development: Initial-Mild-Moderate-Severe. Five quantitative characteristics (length and thickness type I Collagen fibers, Mean SHG signal intensity, Skewness and Coherence SHG signal) are used to describe the sequential degradation of connective tissue (changes in the structure, orientation, shape and density of collagen fibers) up to the formation of specific homogeneous masses.

View Article and Find Full Text PDF

Soft biological tissues, breast cancer tissues in particular, often manifest pronounced nonlinear elasticity, i.e., strong dependence of their Young’s modulus on the applied stress.

View Article and Find Full Text PDF

We present a computationally highly efficient full-wave spectral model of OCT-scan formation with the following features: allowance of arbitrary phase-amplitude profile of illuminating beams; absence of paraxial approximation; utilization of broadly used approximation of ballistic scattering by discrete scatterers without limitations on their density/location and scattering strength. The model can easily incorporate the wave decay, dispersion, measurement noises with given signal-to-noise ratios and arbitrary inter-scan displacements of scatterers. We illustrate several of such abilities, including comparative simulations of OCT-scans for Bessel versus Gaussian beams, presence of arbitrary aberrations at the tissue boundary and various scatterer motions.

View Article and Find Full Text PDF

Multimodal optical coherent tomography grows popularity with researchers and clinicians over the past decade. One of the modalities is lymphangiography, which allows visualization of the lymphatic vessel networks within optical coherence tomography (OCT) imaging volume. In the present study, it is shown that lymphatic vessel visualization obtained from the depth-resolved attenuation coefficient distributions, corrected for the noise, shows improved contrast and detail in comparison with previously proposed approaches.

View Article and Find Full Text PDF

The possibility to assess molecular-biological and morphological features of particular breast cancer types can improve the precision of resection margin detection and enable accurate determining of the tumor aggressiveness, which is important for treatment selection. To enable reliable differentiation of breast-cancer subtypes and evaluation of resection margin, without performing conventional histological procedures, here we apply cross-polarization optical coherence tomography (CP-OCT) and compare it with a novel variant of compressional optical coherence elastography (C-OCE) in terms of the diagnostic accuracy (Ac) with histological verification. The study used 70 excised breast cancer specimens with different morphological structure and molecular status (Luminal A, Luminal B, Her2/Neo+, non-luminal and triple-negative cancer).

View Article and Find Full Text PDF

Quantitative mapping of deformation and elasticity in optical coherence tomography has attracted much attention of researchers during the last two decades. However, despite intense effort it took ~15 years to demonstrate optical coherence elastography (OCE) as a practically useful technique. Similarly to medical ultrasound, where elastography was first realized using the quasi-static compression principle and later shear-wave-based systems were developed, in OCE these two approaches also developed in parallel.

View Article and Find Full Text PDF

We present a non-invasive (albeit contact) method based on Optical Coherence Elastography (OCE) enabling the in vivo segmentation of morphological tissue constituents, in particular, monitoring of morphological alterations during both tumor development and its response to therapies. The method uses compressional OCE to reconstruct tissue stiffness map as the first step. Then the OCE-image is divided into regions, for which the Young's modulus (stiffness) falls in specific ranges corresponding to the morphological constituents to be discriminated.

View Article and Find Full Text PDF

Emerging methods of anti-tumor therapies require new approaches to tumor response evaluation, especially enabling label-free diagnostics and utilization. Here, to assess the tumor early reaction and predict its long-term response, for the first time we apply in combination the recently developed OCT extensions - optical coherence angiography (OCA) and compressional optical coherence elastography (OCE), thus enabling complementary functional/microstructural tumor characterization. We study two vascular-targeted therapies of different types, (1) anti-angiogenic chemotherapy (ChT) and (2) photodynamic therapy (PDT), aimed to indirectly kill tumor cells through blood supply injury.

View Article and Find Full Text PDF

Moderate heating of collagenous tissues such as cartilage and cornea by infrared laser irradiation can produce biologically nondestructive structural rearrangements and relaxation of internal stresses resulting in the tissue reshaping. The reshaping results and eventual changes in optical and biological properties of the tissue strongly depend on the laser-irradiation regime. Here, a speckle-contrast technique based on monochromatic illumination of the tissue in combination with strain mapping by means of optical coherence elastography (OCE) is applied to reveal the interplay between the temperature and thermal stress fields producing tissue modifications.

View Article and Find Full Text PDF

Analysis of semi-transparent low scattering biological structures in optical coherence tomography (OCT) has been actively pursued in the context of lymphatic imaging, with most approaches relying on the relative absence of signal as a means of detection. Here we present an alternate methodology based on spatial speckle statistics, utilizing the similarity of a distribution of given voxel intensities to the power distribution function of pure noise, to visualize the low-scattering biological structures of interest. In a human tumor xenograft murine model, we show that these correspond to lymphatic vessels and nerves; extensive histopathologic validation studies are reported to unequivocally establish this correspondence.

View Article and Find Full Text PDF

Application of compressional optical coherence elastography (OCE) for delineation of tumor and peri-tumoral tissue with simultaneous assessment of morphological/molecular subtypes of breast cancer is reported. The approach is based on the ability of OCE to quantitatively visualize stiffness of studied samples and then to perform a kind of OCE-based biopsy by analyzing elastographic B-scans that have sizes ~several millimeters similarly to bioptates used for "gold-standard" histological examinations. The method relies on identification of several main tissue constituents differing in their stiffness in the OCE scans.

View Article and Find Full Text PDF

Moderate heating of such collagenous tissues as cornea and cartilages by infra-red laser (IR laser) irradiation is an emerging technology for nondestructive modification of the tissue shape and microstructure for a variety of applications in ophthalmology, otolaryngology and so on. Postirradiation high-resolution microscopic examination indicates the appearance of microscopic either spheroidal or crack-like narrow pores depending on the tissue type and irradiation regime. Such examinations usually require special tissue preparation (eg, staining, drying that affect microstructure themselves) and are mostly suitable for studying individual pores, whereas evaluation of their averaged parameters, especially in situ, is challenging.

View Article and Find Full Text PDF

We describe the use of elastographic processing in phase-sensitive optical coherence tomography (OCT) for visualizing dynamics of strain and tissue-shape changes during laser-induced photothermal corneal reshaping, for applications in the emerging field of non-destructive and non-ablative (non-LASIK) laser vision correction. The proposed phase-processing approach based on fairly sparse data acquisition enabled rapid data processing and near-real-time visualization of dynamic strains. The approach avoids conventional phase unwrapping, yet allows for mapping strains even for significantly supra-wavelength inter-frame displacements of scatterers accompanied by multiple phase-wrapping.

View Article and Find Full Text PDF

In compressional optical coherence elastography, phase-variation gradients are used for estimating quasistatic strains created in tissue. Using reference and deformed optical coherence tomography (OCT) scans, one typically compares phases from pixels with the same coordinates in both scans. Usually, this limits the allowable strains to fairly small values <10?4 to 10?3, with the caveat that such weak phase gradients may become corrupted by stronger measurement noises.

View Article and Find Full Text PDF

A novel hybrid method which combines sub-wavelength-scale phase measurements and pixel-scale displacement tracking for robust strain mapping in compressional optical coherence elastography is proposed. Unlike majority of OCE methods it does not rely on initial reconstruction of displacements and does not suffer from the phase-wrapping problem for super-wavelength displacements. Its robustness is enabled by direct fitting of local phase gradients obviating the necessity of phase unwrapping and error-prone numerical differentiation.

View Article and Find Full Text PDF

Feasibility of speckle tracking in optical coherence tomography (OCT) based on digital image correlation (DIC) is discussed in the context of elastography problems. Specifics of applying DIC methods to OCT, compared to processing of photographic images in mechanical engineering applications, are emphasized and main complications are pointed out. Analytical arguments are augmented by accurate numerical simulations of OCT speckle patterns.

View Article and Find Full Text PDF

We propose a novel OCT-based method for visualizing microvasculature in three-dimension using reference-free processing of individual complex valued B-scans with highly overlapped A-scans. In the lateral direction of such a B-scan, the amplitude and phase of speckles corresponding to vessel regions exhibit faster variability and, thus, can be detected without comparison with other B-scans recorded in the same plane. This method combines elements of several existing OCT angiographic approaches and exhibits: (1) enhanced robustness with respect to bulk tissue motion with frequencies up to tens of Hz, (2) resolution of microcirculation images equal to that of structural images, and (3) possibility of quantifying the vessels in terms of their decorrelation rates.

View Article and Find Full Text PDF

An approach to elastographic mapping in optical coherence tomography (OCT) using comparison of correlation stability of sequentially obtained intensity OCT images of the studied strained tissue is discussed. The basic idea is that for stiffer regions, the OCT image is distorted to a smaller degree. Consequently, cross-correlation maps obtained with compensation of trivial translational motion of the image parts using a sliding correlation window can represent the spatial distribution of the relative tissue stiffness.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiona1i6n2hjd9qhdittdard298tilpuc5r4): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once