Publications by authors named "Letrun R"

We report on recent developments that enable megahertz hard X-ray phase contrast imaging (MHz XPCI) experiments at the Single Particles, Clusters, and Biomolecules and Serial Femtosecond Crystallography (SPB/SFX) instrument of the European XFEL facility (EuXFEL). We describe the technical implementation of the key components, including an MHz fast camera and a modular indirect X-ray microscope system based on fast scintillators coupled through a high-resolution optical microscope, which enable full-field X-ray microscopy with phase contrast of fast and irreversible phenomena. The image quality for MHz XPCI data showed significant improvement compared with a pilot demonstration of the technique using parallel beam illumination, which also allows access to up to 24 keV photon energies at the SPB/SFX instrument of the EuXFEL.

View Article and Find Full Text PDF

X-ray multi-projection imaging (XMPI) is an emerging experimental technique for the acquisition of rotation-free, time-resolved, volumetric information on stochastic processes. The technique is developed for high-brilliance light-source facilities, aiming to address known limitations of state-of-the-art imaging methods in the acquisition of 4D sample information, linked to their need for sample rotation. XMPI relies on a beam-splitting scheme, that illuminates a sample from multiple, angularly spaced viewpoints, and employs fast, indirect, X-ray imaging detectors for the collection of the data.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists have found a new way to see tiny changes in proteins very quickly, which is important for biology and medicine.
  • They used special X-ray lasers that can take pictures millions of times a second without much background noise.
  • This new method helps them study how proteins unfold and change shape, making it useful for understanding many different biological processes.
View Article and Find Full Text PDF
Article Synopsis
  • Nanoparticles with varied structures are a major focus in research, and new techniques like high-throughput single-particle imaging (SPI) with X-ray free-electron lasers (XFELs) are now enabling the analysis of millions of these particles.
  • To effectively utilize this technology, researchers faced three key challenges: understanding structural variability, extracting relevant parameters from measurements, and comparing multiple structural models to the data collected.
  • By addressing these challenges, scientists mapped the diverse shapes of gold nanoparticles, revealing important insights into their asymmetry, stable shape patterns, and how external factors like surfactants influence their structure, making nanoparticle characterization more reliable.
View Article and Find Full Text PDF
Article Synopsis
  • The main protease (M) of SARS-CoV-2 is crucial for the virus's functionality and is considered a potential target for drug development, as it is only active in its reduced form.
  • When oxidized, M's activity halts but can be restored, indicating an evolutionary adaptation to oxidative environments, although the protective mechanisms haven't been fully elucidated.
  • Researchers determined the crystal structure of oxidized M, revealing a disulfide bond that affects its dimer stability and crystallization, providing insights into the protein's response to oxidative stress and its structural study conditions.*
View Article and Find Full Text PDF
Article Synopsis
  • Understanding signal transduction in photoreceptor proteins is crucial for how organisms respond to light, and this study focuses on the photoactivatable adenylate cyclase from Oscillatoria acuminata under blue light.
  • The research reveals that ATP binds in an energetically unfavorable conformation at room temperature, which only transitions to a favorable state after light activation.
  • Time-resolved crystallography and cryo-trapping experiments show significant structural changes in the BLUF domain, especially the pivotal rotation of a specific amino acid, Gln48, that stabilizes the light-sensitive FAD chromophore for effective signal transmission.
View Article and Find Full Text PDF
Article Synopsis
  • Hydrodynamic cavitation is a process that helps with things like cleaning water and making chemicals in special reactors.
  • In a specific tube called a Venturi tube, there are many fast-spinning bubbles called vortex cavitation that can glow in the dark, and how bright they are depends on how big and how many there are.
  • Researchers found out that these bubbles are actually shaped differently than what people thought; instead of being round, they're angulated, and they studied how fast the surface of these bubbles moves.
View Article and Find Full Text PDF

Free-electron lasers (FEL) are revolutionizing X-ray-based structural biology methods. While protein crystallography is already routinely performed at FELs, Small Angle X-ray Scattering (SAXS) studies of biological macromolecules are not as prevalent. SAXS allows the study of the shape and overall structure of proteins and nucleic acids in solution, in a quasi-native environment.

View Article and Find Full Text PDF

X-ray free-electron lasers (XFELs) can probe chemical and biological reactions as they unfold with unprecedented spatial and temporal resolution. A principal challenge in this pursuit involves the delivery of samples to the X-ray interaction point in such a way that produces data of the highest possible quality and with maximal efficiency. This is hampered by intrinsic constraints posed by the light source and operation within a beamline environment.

View Article and Find Full Text PDF

X-ray crystallography has witnessed a massive development over the past decade, driven by large increases in the intensity and brightness of X-ray sources and enabled by employing high-frame-rate X-ray detectors. The analysis of large data sets is done via automatic algorithms that are vulnerable to imperfections in the detector and noise inherent with the detection process. By improving the model of the behaviour of the detector, data can be analysed more reliably and data storage costs can be significantly reduced.

View Article and Find Full Text PDF

The unprecedented intensity of x-ray free-electron laser sources has enabled single-particle x-ray diffraction imaging (SPI) of various biological specimens in both two-dimensional projection and three dimensions (3D). The potential of studying protein dynamics in their native conditions, without crystallization or chemical staining, has encouraged researchers to aim for increasingly higher resolutions with this technique. The currently achievable resolution of SPI is limited to the sub-10 nanometer range, mainly due to background effects, such as instrumental noise and parasitic scattering from the carrier gas used for sample delivery.

View Article and Find Full Text PDF

Pump-probe experiments at X-ray free-electron laser (XFEL) facilities are a powerful tool for studying dynamics at ultrafast and longer timescales. Observing the dynamics in diverse scientific cases requires optical laser systems with a wide range of wavelength, flexible pulse sequences and different pulse durations, especially in the pump source. Here, the pump-probe instrumentation available for measurements at the Single Particles, Clusters, and Biomolecules and Serial Femtosecond Crystallography (SPB/SFX) instrument of the European XFEL is reported.

View Article and Find Full Text PDF

Liquid sample delivery systems are used extensively for serial femtosecond crystallography at X-ray free-electron lasers (XFELs). However, misalignment of the liquid jet and the XFEL beam leads to the X-rays either partially or completely missing the sample, resulting in sample wastage and a loss of experiment time. Implemented here is an algorithm to analyse optical images using machine vision to determine whether there is overlap of the X-ray beam and liquid jet.

View Article and Find Full Text PDF
Article Synopsis
  • The European XFEL and LCLS II are powerful X-ray sources that can collect detailed data from crystals at rapid megahertz rates.
  • Researchers used these X-ray pulses to gather two complete datasets from a single lysozyme crystal in less than 1 microsecond, achieving high-resolution structures.
  • The comparison of these structures showed no radiation damage or significant changes, indicating that this multi-hit SFX technique can effectively capture fast structural changes in crystals.
View Article and Find Full Text PDF

Cry11Aa and Cry11Ba are the two most potent toxins produced by mosquitocidal Bacillus thuringiensis subsp. israelensis and jegathesan, respectively. The toxins naturally crystallize within the host; however, the crystals are too small for structure determination at synchrotron sources.

View Article and Find Full Text PDF

Serial femtosecond crystallography is a rapidly developing method for determining the structure of biomolecules for samples which have proven challenging with conventional X-ray crystallography, such as for membrane proteins and microcrystals, or for time-resolved studies. The European XFEL, the first high repetition rate hard X-ray free electron laser, provides the ability to record diffraction data at more than an order of magnitude faster than previously achievable, putting increased demand on sample delivery and data processing. This work describes a publicly available serial femtosecond crystallography dataset collected at the SPB/SFX instrument at the European XFEL.

View Article and Find Full Text PDF
Article Synopsis
  • * Two innovative methods are proposed: common-line principal component analysis (PCA) for rough, automated classification, and variation auto-encoders (VAEs) for generating detailed 3D structures of objects.
  • * Implemented with a noise-tolerant algorithm, these methods show effectiveness on experimental datasets from gold nanoparticles, paving the way for new research on diverse topics like nanocrystal growth and phase transitions.
View Article and Find Full Text PDF

The Sample Environment and Characterization (SEC) group of the European X-ray Free-Electron Laser (EuXFEL) develops sample delivery systems for the various scientific instruments, including systems for the injection of liquid samples that enable serial femtosecond X-ray crystallography (SFX) and single-particle imaging (SPI) experiments, among others. For rapid prototyping of various device types and materials, sub-micrometre precision 3D printers are used to address the specific experimental conditions of SFX and SPI by providing a large number of devices with reliable performance. This work presents the current pool of 3D printed liquid sample delivery devices, based on the two-photon polymerization (2PP) technique.

View Article and Find Full Text PDF

Serial femtosecond crystallography (SFX) is a powerful technique that exploits X-ray free-electron lasers to determine the structure of macro-molecules at room temperature. Despite the impressive exposition of structural details with this novel crystallographic approach, the methods currently available to introduce crystals into the path of the X-ray beam sometimes exhibit serious drawbacks. Samples requiring liquid injection of crystal slurries consume large quantities of crystals (at times up to a gram of protein per data set), may not be compatible with vacuum configurations on beamlines or provide a high background due to additional sheathing liquids present during the injection.

View Article and Find Full Text PDF

A peak-finding algorithm for serial crystallography (SX) data analysis based on the principle of 'robust statistics' has been developed. Methods which are statistically robust are generally more insensitive to any departures from model assumptions and are particularly effective when analysing mixtures of probability distributions. For example, these methods enable the discretization of data into a group comprising inliers ( the background noise) and another group comprising outliers ( Bragg peaks).

View Article and Find Full Text PDF

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

View Article and Find Full Text PDF

The European XFEL (EuXFEL) is a 3.4-km long X-ray source, which produces femtosecond, ultrabrilliant and spatially coherent X-ray pulses at megahertz (MHz) repetition rates. This X-ray source has been designed to enable the observation of ultrafast processes with near-atomic spatial resolution.

View Article and Find Full Text PDF

The world's first superconducting megahertz repetition rate hard X-ray free-electron laser (XFEL), the European XFEL, began operation in 2017, featuring a unique pulse train structure with 886 ns between pulses. With its rapid pulse rate, the European XFEL may alleviate some of the increasing demand for XFEL beamtime, particularly for membrane protein serial femtosecond crystallography (SFX), leveraging orders-of-magnitude faster data collection. Here, we report the first membrane protein megahertz SFX experiment, where we determined a 2.

View Article and Find Full Text PDF
Article Synopsis
  • The European X-ray Free-Electron Laser (FEL), launched in May 2017, is the world's first high-repetition-rate hard X-ray FEL, enhancing biological structure determination through advanced serial crystallography.
  • Its ability to perform experiments at significantly higher data rates allows for groundbreaking discoveries and access to complex experiments that weren’t possible with older systems.
  • The paper details the SPB/SFX instrument's features, which support various techniques like serial crystallography and single particle imaging, as well as its current capabilities and future potential.
View Article and Find Full Text PDF

We provide a detailed description of a serial femtosecond crystallography (SFX) dataset collected at the European X-ray free-electron laser facility (EuXFEL). The EuXFEL is the first high repetition rate XFEL delivering MHz X-ray pulse trains at 10 Hz. The short spacing (<1 µs) between pulses requires fast flowing microjets for sample injection and high frame rate detectors.

View Article and Find Full Text PDF