BMJ Open
November 2024
Introduction: Microwave imaging presents several potential advantages including its non-ionising and harmless nature. This open, multicentric, interventional, prospective, non-randomised trial aims to validate MammoWave's artificial intelligence (AI)-based classification algorithm, leveraging microwave imaging, to achieve a sensitivity exceeding 75% and a specificity exceeding 90% in breast screening.
Methods And Analysis: 10 000 volunteers undergoing regular mammographic breast cancer screening will be recruited across 9 European centres and invited to participate in the clinical study, involving MammoWave testing on both breasts.
Novel and efficient strategies need to be developed to interfere with the SARS-CoV-2 virus. One of the most promising pharmaceutical targets is the nucleocapsid protein (N), responsible for genomic RNA packaging. N is composed of two folded domains and three intrinsically disordered regions (IDRs).
View Article and Find Full Text PDFSARS-CoV-2 (SCoV2) and its variants of concern pose serious challenges to the public health. The variants increased challenges to vaccines, thus necessitating for development of new intervention strategies including anti-virals. Within the international Covid19-NMR consortium, we have identified binders targeting the RNA genome of SCoV2.
View Article and Find Full Text PDFThe SARS-CoV-2 nucleocapsid (N) protein is crucial for the highly organized packaging and transcription of the genomic RNA. Studying atomic details of the role of its intrinsically disordered regions (IDRs) in RNA recognition is challenging due to the absence of structure and to the repetitive nature of their primary sequence. IDRs are known to act in concert with the folded domains of N and here we use NMR spectroscopy to identify the priming events of N interacting with a regulatory SARS-CoV-2 RNA element.
View Article and Find Full Text PDFThe highly infectious disease COVID-19 caused by the SARS-CoV-2 poses a severe threat to humanity and demands the redirection of scientific efforts and criteria to organized research projects. The international consortium seeks to provide such new approaches by gathering scientific expertise worldwide. In particular, making available viral proteins and RNAs will pave the way to understanding the SARS-CoV-2 molecular components in detail.
View Article and Find Full Text PDFThe nucleocapsid protein N from SARS-CoV-2 is one of the most highly expressed proteins by the virus and plays a number of important roles in the transcription and assembly of the virion within the infected host cell. It is expected to be characterized by a highly dynamic and heterogeneous structure as can be inferred by bioinformatics analyses as well as from the data available for the homologous protein from SARS-CoV. The two globular domains of the protein (NTD and CTD) have been investigated while no high-resolution information is available yet for the flexible regions of the protein.
View Article and Find Full Text PDFMany properties of intrinsically disordered proteins (IDPs), or protein regions (IDRs), are modulated by the nature of amino acid side chains as well as by local solvent exposure. We propose a set of exclusively heteronuclear NMR experiments to investigate these features in different experimental conditions that are relevant for physiological function. The proposed approach is generally applicable to many IDPs/IDRs whose assignment is available in the Biological Magnetic Resonance Bank (BMRB) to investigate how their properties are modulated by different, physiologically relevant conditions.
View Article and Find Full Text PDFIntrinsically disordered proteins (IDPs) as well as intrinsically disordered regions (IDRs) of complex protein machineries have recently been recognized as key players in many cellular functions. NMR represents a unique tool to access atomic resolution structural and dynamic information on highly flexible IDPs/IDRs. Improvements in instrumental sensitivity made heteronuclear direct detection possible for biomolecular NMR applications.
View Article and Find Full Text PDF