Publications by authors named "Letizia Penolazzi"

Objectives: This study aimed to develop an innovative 3D in vitro model based on the biphasic calcium phosphate (BCP) scaffold combined with human osteoblasts (hOBs), osteoclasts (hOCs), and endothelial cells to evaluate its effects on bone and vascular cells behavior.

Methods: To this end, an optimized mixture of hydroxyapatite (HA) and β-tricalcium phosphate (TCP) with a weight ratio of 30/70 was employed to develop a BCP scaffold using the computer-aided design (CAD) approach. The BCP scaffold was combined with primary cultures of hOBs, hOCs and human umbilical vein endothelial cells (HUVECs).

View Article and Find Full Text PDF

A comprehensive understanding of the molecules that play key roles in the physiological and pathological homeostasis of the human intervertebral disc (IVD) remains challenging, as does the development of new therapeutic treatments. We recently found a positive correlation between IVD degeneration (IDD) and P2X7 receptor (P2X7R) expression increases both in the cytoplasm and in the nucleus. Using immunocytochemistry, reverse transcription PCR (RT-PCR), overexpression, and chromatin immunoprecipitation, we found that NFATc1 and hypoxia-inducible factor-1α (HIF-1α) are critical regulators of P2X7R.

View Article and Find Full Text PDF

The degeneration of intervertebral disc (IVD) is a disease of the entire joint between two vertebrae in the spine caused by loss of extracellular matrix (ECM) integrity, to date with no cure. The various regenerative approaches proposed so far have led to very limited successes. An emerging opportunity arises from the use of decellularized ECM as a scaffolding material that, directly or in combination with other materials, has greatly facilitated the advancement of tissue engineering.

View Article and Find Full Text PDF

Identifying the subcellular localization of a protein within a cell is often an essential step in understanding its function. The main objective of this report was to determine the presence of the P2X7 receptor (P2X7R) in healthy human cells of skeletal system, specifically osteoblasts (OBs), chondrocytes (Chs) and intervertebral disc (IVD) cells. This receptor is a member of the ATP-gated ion channel family, known to be a main sensor of extracellular ATP, the prototype of the danger signal released at sites of tissue damage, and a ubiquitous player in inflammation and cancer, including bone and cartilaginous tissues.

View Article and Find Full Text PDF

Intervertebral disc (IVD) degeneration (IDD) is closely associated with inflammation, oxidative stress and loss of the discogenic phenotype, which current therapies are unable to reverse. In the present study, the effects of acetone extract from Violina pumpkin () leaves on degenerated IVD cells were investigated. IVD cells were isolated from the degenerated disc tissue of patients undergoing spinal surgery and were exposed to acetone extract and three major thin layer chromatography subfractions.

View Article and Find Full Text PDF

Many biomaterials for bone regeneration have recently been produced using thermally gelled curdlan (1,3-β-d-glucan) as a binder for bioceramics. As the human organism does not produce enzymes having the ability to degrade curdlan, it is not clear what is the fate of curdlan gel after its implantation in the bone. To clarify this point, in this research osteoclasts were cultured on the curdlan gel to show its degradation by acidic hydrolysis.

View Article and Find Full Text PDF

Aims: The main cause of low back pain is the intervertebral disc (IVD) degeneration. Designing an effective disc regeneration strategy still remains a major challenge, especially for the lack of effective self-healing capacity. Understanding the properties of IVD cells in the degenerate microenvironment could help to develop in situ regeneration strategies.

View Article and Find Full Text PDF

Mechanisms involved in the development of intervertebral disc (IVD) degeneration are only partially known, thus making the implementation of effective therapies very difficult. In this study, we investigated P2X7 purinergic receptor (P2X7R), NLRP3 inflammasome, and interleukin (IL)-1β expression in IVD specimens at different stages of disease progression, and during the in vitro dedifferentiation process of the primary cells derived thereof. We found that P2X7R, NLRP3, and IL-1β expression was higher in the IVD samples at a more advanced stage of degeneration and in the expanded IVD cells in culture which partially recapitulated the in vivo degeneration process.

View Article and Find Full Text PDF

Several natural compounds, such as vitamin K2, have been highlighted for their positive effects on bone metabolism. It has been proposed that skeletal disorders, such as osteoporosis, may benefit from vitamin K2-based therapies or its regular intake. However, further studies are needed to better clarify the effects of vitamin K2 in bone disorders.

View Article and Find Full Text PDF

Traditional medicines rely mainly on use of plant extracts to mitigate or treat a wide range of disorders, including those that affect skeletal homeostasis. In this study, we investigated for the first time the potential pro-osteogenic effects of hexane, acetone and methanol extracts of the leaves of Cucurbita moschata, a very popular pumpkin cultivar in Western countries. We found that in Cucurbita moschata leaves, there are acetone-extractable substances-in particular, fatty acids such as 13-OH-9Z,11E,15E-octadecatrienoic acid (PU-13OH-FA), which is capable of both stimulating the function of human primary osteoblasts, which are responsible for bone formation, and inhibiting the differentiation of human osteoclasts, which are responsible for bone resorption.

View Article and Find Full Text PDF

Glucosamine (GlcN) functions as a building block of the cartilage matrix, and its multifaceted roles in promoting joint health have been extensively investigated. However, the role of GlcN in osteogenesis and bone tissue is poorly understood, mainly due to the lack of adequate experimental models. As a result, the benefit of GlcN application in bone disorders remains controversial.

View Article and Find Full Text PDF

Bone mineralization is an orchestrated process by which mineral crystals are deposited by osteoblasts; however, the detailed mechanisms remain to be elucidated. The presence of P2X7 receptor (P2X7R) in immature and mature bone cells is well established, but contrasting evidence on its role in osteogenic differentiation and deposition of calcified bone matrix remains. To clarify these controversies in the present study, we investigated P2X7R participation in bone maturation.

View Article and Find Full Text PDF

Regenerative therapies for intervertebral disc (IVD) injuries are currently a major challenge that is addressed in different ways by scientists working in this field. Extracellular matrix (ECM) deriving from decellularized non-autologous tissues has been established as a biomaterial with remarkable regenerative capacity and its potential as a therapeutic agent is rising. In the present study, we investigated the potential of decellularized Wharton's jelly matrix (DWJM) from human umbilical cord to act as an ECM-based scaffold for IVD cell culturing.

View Article and Find Full Text PDF

Intervertebral disc (IVD), a moderately moving joint located between the vertebrae, has a limited capacity for self-repair, and treating injured intervertebral discs remains a major challenge. The development of innovative therapies to reverse IVD degeneration relies primarily on the discovery of key molecules that, occupying critical points of regulatory mechanisms, can be proposed as potential intradiscal injectable biological agents. This study aimed to elucidate the underlying mechanism of the reciprocal regulation of two genes differently involved in IVD homeostasis, the miR-221 microRNA and the TRPS1 transcription factor.

View Article and Find Full Text PDF

Background And Purpose: The pathogenesis of endometrial cancer (EC) involves many regulatory pathways including transcriptional regulatory networks supported by transcription factors and microRNAs only in part known. The aim of this retrospective study was to explore the possible correlation in the EC microenvironment between master regulators of complex phenomena such as steroid responsiveness through estrogen receptor alpha (ERα) and progesterone receptor (PR), epithelial-to-mesenchymal transition (supported by SLUG transcription factor), hypoxia (with hypoxia inducible factor-1 alpha, HIF-1α), and obesity that has been recognized as a EC risk factor.

Methods: Formalin-Fixed Paraffin-Embedded (FFPE) blocks from University of Ferrara Pathology Archive were used and allocated into 2 groups according to their immunohistochemical positivity to ERα and PR, distinguishing the samples with a more benign prognosis (ERα/PR) from those with a poorer prognosis (ERα/PR).

View Article and Find Full Text PDF

Background/aims: Mesenchymal stromal cells (MSCs) hold considerable promise in bone tissue engineering, but their poor survival and potency when in vivo implanted limits their therapeutic potential. For this reason, the study on culture conditions and cellular signals that can influence the potential therapeutic outcomes of MSCs have received considerable attention in recent years. Cell maintenance under hypoxic conditions, in particular for a short period, is beneficial for MSCs, as low O2 tension is similar to that present in the physiologic niche, however the precise mechanism through which hypoxia preconditioning affects these cells remains unclear.

View Article and Find Full Text PDF

Background: Tumor-specific isoforms generated by alternative splicing (AS) are demonstrated to contribute to tumor progression and can represent potential biomarkers. NOVA2 is an AS factor that in physiological conditions regulates endothelial cells' (ECs) polarity and vessel lumen maturation, likely by mediating AS of apical-basal polarity regulators. However, NOVA2 expression in tumor ECs and its regulation have never been investigated.

View Article and Find Full Text PDF

The aim of this study was to investigate the role of an antichondrogenic factor, MIR221 (miR-221), in intervertebral disc degeneration (IDD), and provide basic information for the development of a therapeutic strategy for the disc repair based on specific nucleic acid based drugs, such as miR-221 silencing. We established a relatively quick protocol to minimize artifacts from extended in vitro culture, without selecting the different types of cells from intervertebral disc (IVD) or completely disrupting extracellular matrix (ECM), but by using the whole cell population with a part of resident ECM. During the de-differentiation process miR-221 expression significantly increased.

View Article and Find Full Text PDF

Unlabelled: Purpose/Aim of the study. Collagen type XV (ColXV) was identified, in our previews studies, as a novel component of bone extracellular matrix. The present study aims to investigate ColXV localization during mineralization of osteodifferentiated human mesenchymal stem cells (hMSCs).

View Article and Find Full Text PDF

Hydrogen sulfide (HS), generated in the osteoblasts predominantly via cystathionine-γ-lyase (CSE), is bone protective. Previous studies suggested that the onset of bone loss due to estrogen deficiency is associated to decreased levels of HS and blunted gene expression of CSE. However, there are still a lot of unknowns on how HS levels influence bone cells function.

View Article and Find Full Text PDF

Tissue engineering (TE) approaches using biomaterials have gain important roles in the regeneration of cartilage. This paper describes the production by microfluidics of alginate-based microfibers containing both extracellular matrix (ECM)-derived biomaterials and chondrocytes. As ECM components gelatin or decellularized urinary bladder matrix (UBM) were investigated.

View Article and Find Full Text PDF

Menaquinones, also known as Vitamin K2 family, regulate calcium homeostasis in a 'bone-vascular cross-talk' and recently received particular attention for their positive effect on bone formation. Given that the correlation between menaquinones and bone metabolism to date is still unclear, the objective of our study was to investigate the possible role of menaquinone-4 (MK-4), an isoform of the menaquinones family, in the modulation of osteogenesis. For this reason, we used a model of human amniotic fluid mesenchymal stem cells (hAFMSCs) cultured both in two-dimensional (2D) and three-dimensional (3D; RCCS™bioreactor) in vitro culture systems.

View Article and Find Full Text PDF

The field of cartilage repair has exponentially been growing over the past decade. Here, we discuss the possibility to achieve satisfactory regeneration of articular cartilage by means of human mesenchymal stem cells (hMSCs) depleted of anti-chondrogenic factors and implanted in the site of injury. Different types of molecules including transcription factors, transcriptional co-regulators, secreted proteins, and microRNAs have recently been identified as negative modulators of chondroprogenitor differentiation and chondrocyte function.

View Article and Find Full Text PDF