Publications by authors named "Letitia Jean"

Background: The malaria parasite Plasmodium falciparum replicates within red blood cells, then ruptures the cell in a process called egress in order to continue its life cycle. Egress is regulated by a proteolytic cascade involving an essential parasite subtilisin-like serine protease called SUB1. Maturation of SUB1 initiates in the parasite endoplasmic reticulum with autocatalytic cleavage of an N-terminal prodomain (p31), which initially remains non-covalently bound to the catalytic domain, p54.

View Article and Find Full Text PDF

Malaria parasites such as Plasmodium falciparum have exerted formidable selective pressures on the human genome. Of the human genetic variants associated with malaria protection, beta thalassaemia (a haemoglobinopathy) was the earliest to be associated with malaria prevalence. However, the malaria protective properties of beta thalassaemic erythrocytes remain unclear.

View Article and Find Full Text PDF

Many protein misfolding diseases (e.g. type II diabetes and Alzheimer's disease) are characterised by amyloid deposition.

View Article and Find Full Text PDF

Amyloidoses (misfolded polypeptide accumulation) are among the most debilitating diseases our aging societies face. Amyloidogenesis can be catalyzed by hydrophobic-hydrophilic interfaces (e.g.

View Article and Find Full Text PDF

Many neurodegenerative diseases are characterized by amyloid deposition. In Alzheimer's disease (AD), β-amyloid (Aβ) peptides accumulate extracellularly in senile plaques. The AD amyloid cascade hypothesis proposes that Aβ production or reduced clearance leads to toxicity.

View Article and Find Full Text PDF

Despite a dramatic increase in our ability to catalogue variation among pathogen genomes, we have made far fewer advances in using this information to identify targets of protective immunity. Epidemiological models predict that strong immune selection can cause antigenic variants to structure into genetically discordant sets of antigenic types (e.g.

View Article and Find Full Text PDF

Deposition of misfolded amyloid polypeptides, associated with cell death, is the hallmark of many degenerative diseases (e.g. type II diabetes mellitus and Alzheimer's disease).

View Article and Find Full Text PDF

Hydrogels are water-swollen and viscoelastic three-dimensional cross-linked polymeric network originating from monomer polymerisation. Hydrogel-forming polypeptides are widely found in nature and, at a cellular and organismal level, they provide a wide range of functions for the organism making them. Amyloid structures, arising from polypeptide aggregation, can be damaging or beneficial to different types of organisms.

View Article and Find Full Text PDF

Many chronic degenerative diseases result from aggregation of misfolded polypeptides to form amyloids. Many amyloidogenic polypeptides are surfactants and their assembly can be catalysed by hydrophobic-hydrophilic interfaces (an air-water interface in-vitro or membranes in-vivo). We recently demonstrated the specificity of surface-induced amyloidogenesis but the mechanisms of amyloidogenesis and more specifically of adsorption at hydrophobic-hydrophilic interfaces remain poorly understood.

View Article and Find Full Text PDF

Amyloid formation is a hallmark of protein misfolding diseases (e.g. Type II diabetes mellitus).

View Article and Find Full Text PDF

Amyloid formation and accumulation is a hallmark of protein misfolding diseases and is associated with diverse pathologies including type II diabetes and Alzheimer's disease (AD). In vitro, amyloidogenesis is widely studied in conditions that do not simulate the crowded and viscous in vivo environment. A high volume fraction of most biological fluids is occupied by various macromolecules, a phenomenon known as macromolecular crowding.

View Article and Find Full Text PDF

The aggregation of proteins or peptides into amyloid fibrils is a hallmark of protein misfolding diseases (e.g., Alzheimer's disease) and is under intense investigation.

View Article and Find Full Text PDF

Protein amyloid fibrils are a form of linear protein aggregates that are implicated in many neurodegenerative diseases. Here, we study the dynamics of amyloid fibril elongation by performing Langevin dynamic simulations on a coarse-grained model of peptides. Our simulation results suggest that the elongation process is dominated by a series of local minimum due to frustration in monomer-fibril interactions.

View Article and Find Full Text PDF

Amyloid accumulation is associated with pathological conditions, including type II diabetes and Alzheimer's disease. Lipids influence amyloidogenesis and are themselves targets for amyloid-mediated cell membrane disruption. Amyloid precursors are surface-active, accumulating at hydrophobic-hydrophilic interfaces (e.

View Article and Find Full Text PDF

Polymerization into amyloid fibrils is a crucial step in the pathogenesis of neurodegenerative syndromes. Amyloid assembly is governed by properties of the sequence backbone and specific side-chain interactions, since fibrils from unrelated sequences possess similar structures and morphologies. Therefore, characterization of the structural determinants driving amyloid aggregation is of fundamental importance.

View Article and Find Full Text PDF

Neurodegenerative diseases associated with abnormal protein folding and ordered aggregation require an initial trigger which may be infectious, inherited, post-inflammatory or idiopathic. Proteolytic cleavage to generate vulnerable precursors, such as amyloid-beta peptide (Abeta) production via beta and gamma secretases in Alzheimer's Disease (AD), is one such trigger, but the proteolytic removal of these fragments is also aetiologically important. The levels of Abeta in the central nervous system are regulated by several catabolic proteases, including insulysin (IDE) and neprilysin (NEP).

View Article and Find Full Text PDF

Parasite serine proteases play essential roles in the asexual erythrocytic life cycle of the malaria parasite. The timing and location of expression of Plasmodium falciparum subtilisin-like protease-1 (PfSUB-1) are consistent with a role in erythrocyte invasion. Maturation of PfSUB-1 involves two autocatalytic processing events in which an 82 kDa precursor is converted to a 54 kDa form, followed by further cleavage to produce a 47 kDa form.

View Article and Find Full Text PDF

Proteases play critical roles in the life cycle of the malaria parasite, Plasmodium spp. Within the asexual erythrocytic cycle, responsible for the clinical manifestations of malaria, substantial interest has focused on the role of parasite serine proteases as a result of indications that they are involved in red blood cell invasion. Over the past 6 years, three Plasmodium genes encoding serine proteases of the subtilisin-like clan, or subtilases, have been identified.

View Article and Find Full Text PDF

Erythrocyte invasion by the malaria merozoite is prevented by serine protease inhibitors. Various aspects of the biology of Plasmodium falciparum subtilisin-like protease-1 (PfSUB-1), including the timing of its expression and its apical location in the merozoite, suggest that this enzyme is involved in invasion. Recombinant PfSUB-1 expressed in a baculovirus system is secreted in the p54 form, noncovalently bound to its cognate propeptide, p31.

View Article and Find Full Text PDF