Publications by authors named "Leticia Vidal-Linan"

Lately, the role of microplastics (MP) as vectors for dissolved contaminants and as vehicle for their transfer to aquatic organisms has received attention. Similarly to MP, other inorganic and organic particles may act as passive samplers. However, limited comparative knowledge exists at this respect.

View Article and Find Full Text PDF

The objective of this study was to determine whether and to what extent microplastics (MPs) enhance the toxicity of pollutants as well as whether pollutant-loaded MPs act as relevant vectors of chemical pollutants. With this aim, the toxicity for mussel and sea urchin embryos of: 1) three dissolved pollutants (Pol): chlorpyrifos (CPF), fluoranthene (FLT) and mercury (Hg); 2) their mixture with Microplastics (MP + Pol); and 3) pollutant-loaded MPs (MP), was assessed. Analyses of CPF, FLT and Hg were also performed to evaluate the transfer among dissolved and particulate phases.

View Article and Find Full Text PDF

The role of the biopolymer polyhydroxybutyrate (PHB, <250 µm) as a vehicle of a synthetic musks mixture (celestolide, galaxolide, tonalide, musk xylene, musk moskene and musk ketone) to Mytilus galloprovincialis was investigated. For 30 days, virgin PHB, virgin PHB+musks (6.82 µg g-1) and weathered PHB+musks, were daily spiked into tanks containing mussels, followed by a 10-day depuration period.

View Article and Find Full Text PDF

Microplastic occurrence in marine biota has been reported in a wide range of animals, from marine mammals and seabirds to invertebrates. Commercial and shallow-water fish have been the subject of numerous works on microplastic ingestion, given their importance in human diet and accessibility. However, little is known about microlitter occurrence in fish species inhabiting the dark ocean, in the bathyal zone and there is a high degree of uncertainty about microplastic distribution in offshore areas and the deep sea.

View Article and Find Full Text PDF

The effects of three relevant organic pollutants: chlorpyrifos (CPF), a widely used insecticide, triphenyl phosphate (TPHP), employed as flame retardant and as plastic additive, and bisphenol A (BPA), used primarily as plastic additive, on sea urchin (Paracentrotus lividus) larvae, were investigated. Experiments consisted of exposing sea urchin fertilized eggs throughout their development to the 4-arm pluteus larval stage. The antioxidant enzymes glutathione reductase (GR) and catalase (CAT), the phase II detoxification enzyme glutathione S-transferase (GST), and the neurotransmitter catabolism enzyme acetylcholinesterase (AChE) were assessed in combination with responses at the individual level (larval growth).

View Article and Find Full Text PDF

A novel, systematic approach to relate plastic toxicity with chemical composition is undertaken. Using industrial methods, three petroleum-based polymers, low-density polyethylene (PE), polyvinyl chloride (PVC), and polyamide (PA), and the biopolymer polyhydroxybutyrate (PHB) were manufactured in different formularies including conventional and alternative additives, and microplastics of two sizes (<250 and <20 µm) were obtained with the aim to relate their composition with environmental impact in aquatic environments. Internationally accepted standard tests of regulatory use with marine organisms representative of microalgae (Tisochrysis lutea population growth), crustaceans (Acartia clausi larval survival), and echinoderms (Paracentrotus lividus sea-urchin embryo test) support the following conclusions.

View Article and Find Full Text PDF

Organophosphate flame retardants (OPFRs) are (re-)emergent environmental pollutants increasingly being used because of the restriction of other flame retardants. The chlorinated OPFR, tris(1,3-dichloro-2-propyl) phosphate (TDCPP) is among those of highest environmental concern, but its potential effects in the marine environment have rarely been investigated. We exposed a widely used sentinel marine mussel species, Mytilus galloprovincialis, to 10 μg L of TDCPP during 28 days and studied: (i) the kinetics of bioaccumulation and elimination of the compound, (ii) the effect on two molecular biomarkers, glutathione S-transferase (GST) and acetylcholinesterase (AChE) activities, and (iii) proteomic alterations in the gills, following an isobaric labeling quantitative shotgun proteomic approach, at two exposure times (7 and 28 days).

View Article and Find Full Text PDF

In this study the bioaccumulation kinetics of organic UV filters, such as 4-MBC, BP-3, BP-4, OC and OD-PABA in wild Mytilus galloprovincialis mussels was investigated. The uptake and accumulation of waterborne 4-MBC, BP-4 and OC was very rapid, and after only 24 h of exposure to 1 μg L, the tissular concentrations were 418, 263 and 327 μg kgd.w.

View Article and Find Full Text PDF

In this study, PCB-153 bioaccumulation kinetics and concentration-response experiments were performed employing wild Mytilus galloprovincialis mussels. In addition, the activity of three enzymatic biomarkers: glutathione S-transferase (GST), glutathione peroxidase (GPx) and acetylcholinesterase (AChE), were measured in the mussel gills. The experimental data fitted well to an asymptotic accumulation model with a high bioconcentration factor (BCF) of 9324 L kg(-1) and a very limited depuration capacity, described by a low excretion rate coefficient (Kd = 0.

View Article and Find Full Text PDF

Wild marine mussels, Mytilus galloprovincialis showed a moderate bioaccumulation ability when exposed to waterborne 4-nonylphenol (4-NP), with a bioconcentration factor (BCF) of 6850 L Kg(-1) (dry weight). Kinetic and concentration-response experiments were performed and three enzymatic biomarkers in mussel gills were measured: Glutathione S-transferase (GST), glutathione peroxidase (GPx) and acetylcholinesterase (AChE). Exposure of mussels to environmentally relevant concentrations (25-100 μg L(-1)) of 4-nonylphenol significantly inhibited the AChE activity and induced the GST and GPx activities.

View Article and Find Full Text PDF

Mussels, Mytilus galloprovincialis, showed a high bioaccumulation ability when exposed to waterborne tetrabromodiphenyl ether (BDE-47), with a bioconcentration factor of 10,900 L Kg(-1) wet weight, and slow depuration rates in clean seawater. Kinetic and concentration-response experiments were performed measuring in the exposed mussel the activities of three molecular biomarkers: glutathione S-transferase (GST), glutathione peroxidase (GPx) and acetylcholinesterase (AChE). The long term (30 days) exposure of mussels to all concentrations (2-15 µg L(-1)) of BDE-47 significantly inhibited the AChE and GST activities, a result that supports the suitability of these biomarkers in marine pollution monitoring programs.

View Article and Find Full Text PDF

This study undertakes an overall assessment of pollution in a large region (over 2500 km of coastline) of the N-NW Spanish coast, by combining the use of biochemical (AChE, GST, GPx) and physiological (SFG) responses to pollution, with chemical analyses in wild mussel populations (Mytilus galloprovincialis). The application of chemical analysis and biological techniques identified polluted sites and quantified the level of toxicity. High levels of pollutants were found in mussel populations located close to major cities and industrialized areas and, in general, average concentrations were higher in the Cantabrian than in the Iberian Atlantic coast.

View Article and Find Full Text PDF

Biomarkers are required to assess the biological effects of pollutants on marine organisms in order to monitor ecosystem status, but their use is often limited by their strong variability due to environmental and/or intrinsic biological factors. Accordingly, the main aim of this work was to set up practical procedures for a battery of widely used biomarkers in mussels (Mytilus galloprovincialis). Antioxidant enzymes (catalase [CAT] and glutathione peroxidase [GPx]), a phase II detoxification enzyme (glutathione S-transferase [GST]) and a neurotransmitter catabolism enzyme (acetylcholinesterase [AChE]), were considered.

View Article and Find Full Text PDF

In the present work, we investigated the potential use of several antioxidant enzymes in wild mussels (Mytilus galloprovincialis) as biomarkers of marine pollution. The enzymatic activity levels of glutathione S-transferase (GST), glutathione peroxidase (GPx) and catalase (CAT) were measured in gills and digestive gland. Those enzymes participate in the cellular defense system that is involved in the adaptive response of organisms to chemical pollution.

View Article and Find Full Text PDF