Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder characterized by progressive skeletal muscle degeneration and systemic effects, including the central nervous system (CNS). This study aimed to assess the impact of a 14-day ketogenic diet (DCet) on biochemical and clinical parameters in a DMD mouse model. Young adult mice (50 days old) were fed DCet, while control groups received a standard diet.
View Article and Find Full Text PDFPrenatal factors such as viral or bacterial infections occurring mainly during the first trimesters of pregnancy can increase the incidence of autism spectrum disorder (ASD) in children. In an animal model, it is already known that maternal immune activation (MIA) induces autistic-like behavior. However, it is unclear whether this behavior presents itself in young animals.
View Article and Find Full Text PDFIntroduction: Congenital Muscular Dystrophy type 1D (MDC1D) is characterized by a hypoglycosylation of α-dystroglycan protein (α-DG), and this may be strongly implicated in increased skeletal muscle tissue degeneration and abnormal brain development, leading to cognitive impairment. However, the pathophysiology of brain involvement is still unclear. Low-intensity exercise training (LIET) is known to contribute to decreased muscle degeneration in animal models of other forms of progressive muscular dystrophies.
View Article and Find Full Text PDFAt the end of 2019, a new disease with pandemic potential appeared in China. It was a novel coronavirus called coronavirus disease 2019 (COVID-19). Later, in the first quarter of 2020, the World Health Organization declared the outbreak of this disease a pandemic.
View Article and Find Full Text PDFDuchenne muscular dystrophy (DMD) is a genetic disease associated with progressive skeletal muscle degeneration. In humans, DMD has an early onset, causes developmental delays, and is a devastating disease that drastically diminishes the quality of life of young individuals affected. The objective of this study was to evaluate the effects of a swimming protocol on memory and oxidative stress in an animal model of DMD.
View Article and Find Full Text PDFDuchenne muscular dystrophy (DMD) is a condition caused by an amendment to the X chromosome, inherited as a recessive trait, and affects 1:3500 live births, especially males. Low-intensity exercise is known to decrease certain parameters associated with muscular degeneration in animal models of progressive muscular dystrophies. In the present study, 28-day-old male mdx and wild-type (wild) mice were used.
View Article and Find Full Text PDFBackground: Studies have shown the relationship between neuroinflammation and depressive- like parameters. However, research still has not been carried out to evaluate neuroinflammation in the neonatal period and psychiatric disorders in adulthood.
Objective: To verify the association between neonatal immune activation and depressive-like parameters in adulthood using an animal model.
The neonatal immune system is still immature, which makes it more susceptible to the infectious agents. Neonatal immune activation is associated with increased permeability of the blood-brain barrier, causing an inflammatory cascade in the CNS and altering behavioral and neurochemical parameters. One of the hypotheses that has been studied is that neuroinflammation may be involved in neurodegenerative processes, such as Alzheimer's disease (AD).
View Article and Find Full Text PDFDuchenne muscular dystrophy (DMD) is a neuromuscular disorder that affects muscles and also the brain, resulting in memory and behavioral problems. In the pathogenesis of DMD, inflammation is an important factor during the degenerative process. However, the involvement of the brain is still unclear.
View Article and Find Full Text PDFCitrus species are widely related to antihyperalgesic and anti-inflammatory effects. The aim of this study was to investigate if treatment with ethanolic extract from peels of mature Citrus reticulata Blanco causes antihyperalgesic effects on the referred mechanical hyperalgesia in a model of dextran sulphate of sodium (DSS)-induced colitis in mice, as well as the possible oxidative damage in different regions of the brain induced by its inflammatory reaction. Antihyperalgesia (30 to 300 mg/kg) was investigated by behavioral response (frequency of response to von Frey filament stimulation) in Swiss mice, while damage to central nervous system was investigated through techniques that evaluated oxidative stress using male black C57 BL6 mice (n=8).
View Article and Find Full Text PDFSepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection that may affect the brain. We investigated the role of indoleamine 2,3-dioxygenase (IDO-1/2) inhibition on long-term memory and energetic metabolism after experimental sepsis by caecal ligation and perforation (CLP). Experimental sepsis increased the activity of complexes I, II-III and IV at 24h after CLP, and IDO-1/2 inhibition normalized the activity of these complexes in the hippocampus.
View Article and Find Full Text PDFNeonatal sepsis is a major cause of morbidity and mortality in neonatal intensive care units. Treatment with antibiotics reduces mortality and morbidity, but neonatal sepsis remains a serious life-threatening condition. The objective of this study was to evaluate cognitive impairment in adult mice submitted to sepsis in the neonatal period.
View Article and Find Full Text PDFIntroduction: Duchenne muscular dystrophy (DMD) is a degenerative disease of skeletal, respiratory, and cardiac muscles caused by defects in the dystrophin gene. More recently, brain involvement has been verified. Mitochondrial dysfunction and oxidative stress may underlie the pathophysiology of DMD.
View Article and Find Full Text PDFObjectives: to analyze the Pelvic Floor Muscle Strength (PFMS) of pregnant women with one or more vaginal or cesarean deliveries; to compare the PFMS of these with pregnant women with the PFMS of primiparous women.
Methods: cross-sectional study with women up to 12 weeks pregnant, performed in Itapecerica da Serra, São Paulo state, from December 2012 to May 2013. The sample consisted of 110 pregnant women with one or more vaginal deliveries or cesarean sections and 110 primigravidae.
Congenital muscular dystrophies 1D (CMD1D) present a mutation on the LARGE gene and are characterized by an abnormal glycosylation of α-dystroglycan (α-DG), strongly implicated as having a causative role in the development of central nervous system abnormalities such as cognitive impairment seen in patients. However, in the animal model of CMD1D, the brain involvement remains unclear. Therefore, the objective of this study is to evaluate the cognitive involvement in the Large(myd) mice.
View Article and Find Full Text PDF