Background: Malaria is a global health problem and is transmitted by the Anopheles species. Due to the epidemiological importance of the genus, studies on biological, phylogenetic, and evolutionary aspects have contributed to the understanding of adaptation, vector capacity, and resistance to insecticides. The latter may result from different causes such as mutations in the gene that encodes the sodium channel (NaV).
View Article and Find Full Text PDFThe genome assembly of consists of 2221 scaffolds (N50 = 115,072 bp) and has a size spanning 136.94 Mbp. This assembly represents one of the smallest genomes among species.
View Article and Find Full Text PDFIntroduction: Semi-synthetic dillapiole compounds derived from Piper aduncum essential oil are used as alternative insecticides to control insecticide-resistant Aedes aegypti. Thus, we aimed to evaluate the genotoxic effects of semi-synthetic isodillapiole on the nuclei of neuroblasts (larvae) and oocytes (females) and the mean oviposition rates of the females over four generations (G1, G2, G3, and G4) of Ae. aegypti.
View Article and Find Full Text PDFAnopheles darlingi Root, 1926 and Anopheles gambiae (Diptera: Culicidae) are the most important human malaria vectors in South America and Africa, respectively. The two species are estimated to have diverged 100 million years ago. Studies on the phylogenetics and evolution of gene sequences, such as glutathione S-transferase (GST) in disease-transmitting mosquitoes are scarce.
View Article and Find Full Text PDF