Neuropathic pain is one of the most important clinical consequences of injury to the somatosensory system. Nevertheless, the critical pathophysiological mechanisms involved in neuropathic pain development are poorly understood. In this study, we found that neuropathic pain is abrogated when the kynurenine metabolic pathway (KYNPATH) initiated by the enzyme indoleamine 2,3-dioxygenase 1 (IDO1) is ablated pharmacologically or genetically.
View Article and Find Full Text PDFReprod Sci
February 2023
Metadata analysis of public microarray datasets using bioinformatics tools has been successfully used in several biomedical fields in the search for biomarkers. In reproductive science, there is an urgent need for the establishment of oocyte quality biomarkers that could be used in the clinical environment to increase the chances of successful outcomes in treatment cycles. Adaptive cellular processes observed in cumulus oophorus cells reflect the conditions of the follicular microenvironment and may thus bring relevant information of oocyte's conditions.
View Article and Find Full Text PDFPurpose: To study whether the cumulus cell antioxidant system varies accordingly to patients clinical characteristics' as age, infertility diagnosis, BMI, and stimulation protocol applied and if the antioxidant profile of cumulus cells could be used as a predictor of embryo development.
Methods: A prospective study including 383 human cumulus samples provided by 191 female patients undergoing intracytoplasmic sperm injection during in vitro fertilization treatments from a local in vitro fertilization center and processed in university laboratories. Catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione S-transferase (GST) enzyme activity levels and reduced glutathione (GSH) levels were measured in cumulus oophorus cells individually collected from each aspirated cumulus-oocyte complex, and the results of each sample were compared considering the oocytes outcome after ICSI and patients clinical characteristics.
Objective: The aim of the present study was to provide a better understanding of the specific action of two follicle-stimulating hormone (FSH) isoforms (β-follitropin and sheep FSH) on the membrane potential of human cumulus cells.
Methods: Electrophysiological data were associated with the characteristics of the patient, such as age and cause of infertility. The membrane potential of cumulus cells was recorded with borosilicate microelectrodes filled with KCl (3 M) with tip resistance of 15 to 25 MΩ.
Regulation of gene expression in bacteria results from the interplay between hundreds of transcriptional factors (TFs) at target promoters. However, how the arrangement of binding sites for TFs generates the regulatory logic of promoters is not well-known. Here, we generated and fully characterized a library of synthetic complex promoters for the global regulators, CRP and IHF, in Escherichia coli, which are formed by a weak -35/-10 consensus sequence preceded by four combinatorial binding sites for these two TFs.
View Article and Find Full Text PDFIn vitro oocyte maturation presents many advantages and its success is related to the selection of fully grown oocytes. In animal models, staining of cumulus-oocyte complexes (COCs) with Brilliant Cresyl Blue (BCB) is widely used for this selection. However, a lack of information about the safety of BCB makes its applicability in humans questionable.
View Article and Find Full Text PDFEnvironmental bacteria are endowed with several regulatory systems that have potential applications in biotechnology. In this report, we characterize the arsenic biosensing features of the response system from in the heterologous host . We show that the native system of outperforms the chromosomal copy of when exposed to micromolar concentrations of arsenite.
View Article and Find Full Text PDFFilamentous fungi are remarkable organisms naturally specialized in deconstructing plant biomass and this feature has a tremendous potential for biofuel production from renewable sources. The past decades have been marked by a remarkable progress in the genetic engineering of fungi to generate industry-compatible strains needed for some biotech applications. In this sense, progress in this field has been marked by the utilization of high-throughput techniques to gain deep understanding of the molecular machinery controlling the physiology of these organisms, starting thus the Systems Biology era of fungi.
View Article and Find Full Text PDFPlant growth-promoting bacteria can greatly assist sustainable farming by improving plant health and biomass while reducing fertilizer use. The plant-microorganism-environment interaction is an open and complex system, and despite the active research in the area, patterns in root ecology are elusive. Here, we simultaneously analyzed the plant growth-promoting bacteria datasets from seven independent studies that shared a methodology for bioprospection and phenotype screening.
View Article and Find Full Text PDFPaenibacillus riograndensis SBR5(T), a nitrogen-fixing Gram-positive rhizobacterium isolated from a wheat field in the south of Brazil, has a great potential for agricultural applications due to its plant growth promotion effects. Here we present the draft genome sequence of P. riograndensis SBR5(T).
View Article and Find Full Text PDF