Ever since its introduction 40 years ago l-3,4-dihydroxyphenylalanine (l-DOPA) therapy has retained its role as the leading standard medication for patients with Parkinson's disease. With time, however, the shortcomings of oral l-DOPA treatment have become apparent, particularly the motor fluctuations and troublesome dyskinetic side effects. These side effects, which are caused by the excessive swings in striatal dopamine caused by intermittent oral delivery, can be avoided by delivering l-DOPA in a more continuous manner.
View Article and Find Full Text PDFPatients with the lysosomal storage disease mucopolysaccharidosis IIIA (MPSIIIA) lack the lysosomal enzyme N-sulfoglucosamine sulfohydrolase (SGSH), one of the many enzymes involved in degradation of heparan sulfate. Build-up of un-degraded heparan sulfate results in severe progressive neurodegeneration for which there is currently no treatment. Experimental gene therapies based on gene addition are currently being explored.
View Article and Find Full Text PDFEndonucleases of the HUH family are specialized in processing single-stranded DNA in a variety of evolutionarily highly conserved biological processes related to mobile genetic elements. They share a structurally defined catalytic domain for site-specific nicking and strand-transfer reactions, which is often linked to the activities of additional functional domains, contributing to their overall versatility. To assess if these HUH domains could be interchanged, we created a chimeric protein from two distantly related HUH endonucleases, containing the N-terminal HUH domain of the bacterial conjugative relaxase TrwC and the C-terminal DNA helicase domain of the human adeno-associated virus (AAV) replicase and site-specific integrase.
View Article and Find Full Text PDFAdeno-associated viral vectors are showing great promise as gene therapy vectors for a wide range of retinal disorders. To date, evaluation of therapeutic approaches has depended almost exclusively on the use of animal models. With recent advances in human stem cell technology, stem cell-derived retina now offers the possibility to assess efficacy in human organoids in vitro.
View Article and Find Full Text PDFAdeno-associated virus (AAV) is a small single-stranded DNA virus that requires the presence of a helper virus, such as adenovirus or herpes virus, to efficiently replicate its genome. AAV DNA is replicated by a rolling-hairpin mechanism (Ward, 2006), and during replication several DNA intermediates can be detected. This detailed protocol describes how to analyze the AAV DNA intermediates formed during AAV replication using a modified Hirt extract (Hirt, 1967) procedure and Southern blotting (Southern, 1975).
View Article and Find Full Text PDFQuantitative measurement of proteins binding to DNA is a requisite to fully characterize the structural determinants of complex formation necessary to understand the DNA transactions that regulate cellular processes. Here we describe a detailed protocol to measure binding affinity of the adeno-associated virus (AAV) Rep68 protein for the integration site using fluorescent anisotropy. This protocol can be used to measure the binding constants of any DNA binding protein provided the substrate DNA is fluorescently labeled.
View Article and Find Full Text PDFUnlabelled: The life cycle of the human parvovirus adeno-associated virus (AAV) is orchestrated by four Rep proteins. The large Rep proteins, Rep78 and Rep68, are remarkably multifunctional and display a range of biochemical activities, including DNA binding, nicking, and unwinding. Functionally, Rep78 and Rep68 are involved in transcriptional regulation, DNA replication, and genomic integration.
View Article and Find Full Text PDFThe widely used pSU8 family of cloning vectors is based on a p15A replicon and a chloramphenicol acetyltransferase (cat) gene conferring chloramphenicol resistance. We frequently observed an increase in the size of plasmids derived from these vectors. Analysis of the bigger molecular species shows that they have an IS10 copy inserted at a specific site between the promoter and the cat open reading frame.
View Article and Find Full Text PDFAdeno-associated virus type 2 is known to inhibit replication of herpes simplex virus 1 (HSV-1). This activity has been linked to the helicase- and DNA-binding domains of the Rep68/Rep78 proteins. Here, we show that Rep68 can bind to consensus Rep-binding sites on the HSV-1 genome and that the Rep helicase activity can inhibit replication of any DNA if binding is facilitated.
View Article and Find Full Text PDFHigh-throughput integration site (IS) analysis of wild-type adeno-associated virus type 2 (wtAAV2) in human dermal fibroblasts (HDFs) and HeLa cells revealed that juxtaposition of a Rep binding site (RBS) and terminal resolution site (trs)-like motif leads to a 4-fold-increased probability of wtAAV integration. Electrophoretic mobility shift assays (EMSAs) confirmed binding of Rep to off-target RBSs. For the first time, we show Rep protein off-target nicking activity, highlighting the importance of the nicking substrate for Rep-mediated integration.
View Article and Find Full Text PDFUnlabelled: Adeno-associated virus serotype 2 (AAV2) can efficiently replicate in cells that have been infected with helper viruses, such as adenovirus or herpesvirus. However, in the absence of helper virus infection, AAV2 establishes latency by integrating its genome site specifically into PPP1R12C, a gene located on chromosome 19. This integration target site falls into one of the most gene-dense regions of the human genome, thus inviting the question as to whether the virus has evolved mechanisms to control this complex transcriptional environment in order to facilitate integration, maintain an apparently innocuous latency, and/or establish conditions that are conducive to the rescue of the integrated viral genome.
View Article and Find Full Text PDFSite-specific recombinases (SSRs) have been crucial in the development of mammalian transgenesis. For gene therapy purposes, this approach remains challenging, because, for example, SSR delivery is largely unresolved and SSR DNA substrates must pre-exist in target cells. In this review, we discuss the potential of His-hydrophobic-His (HUH) recombinases to overcome some of the limitations of conventional SSRs.
View Article and Find Full Text PDFBackground: Bacterial conjugation is a mechanism for horizontal DNA transfer between bacteria which requires cell to cell contact, usually mediated by self-transmissible plasmids. A protein known as relaxase is responsible for the processing of DNA during bacterial conjugation. TrwC, the relaxase of conjugative plasmid R388, is also able to catalyze site-specific integration of the transferred DNA into a copy of its target, the origin of transfer (oriT), present in a recipient plasmid.
View Article and Find Full Text PDFBacterial type IV secretion systems (T4SSs) are involved in processes such as bacterial conjugation and protein translocation to animal cells. In this work, we have switched the substrates of T4SSs involved in pathogenicity for DNA transfer. Plasmids containing part of the conjugative machinery of plasmid R388 were transferred by the T4SS of human facultative intracellular pathogen Bartonella henselae to both recipient bacteria and human vascular endothelial cells.
View Article and Find Full Text PDFTrwC is a bacterial protein involved in conjugative transfer of plasmid R388. It is transferred together with the DNA strand into the recipient bacterial cell, where it can integrate the conjugatively transferred DNA strand into its target sequence present in the recipient cell. Considering that bacterial conjugation can occur between bacteria and eukaryotic cells, this protein has great biotechnological potential as a site-specific integrase.
View Article and Find Full Text PDF