We developed an advanced microscopy imaging platform enabling amplification-free, multiplex detection of pathogenic bacteria in food and clinical samples, eliminating the need for DNA extraction. This platform leverages two-dimensional encoded polystyrene (PS) microspheres and an Argonaute-based decoding system to create multiplexed signal libraries. Each PS microsphere probe, encoded with spectrally distinct fluorophores and differing particle sizes, achieves high fluorescence through a tetrahedral DNA-enhanced hybridization chain reaction (TDNA-HCR), significantly enhancing signal intensity and reducing reaction time by 67%.
View Article and Find Full Text PDFThe coronavirus disease 2019 (COVID-19) pandemic has driven major advances in virus research. The role of glycans in viral infection has been revealed, with research demonstrating that terminal sialic acids are key receptors during viral attachment and infection into host cells. However, there is an urgent demand for universal tools to study the mechanism of sialic acids in viral infections, as well as to develop therapeutic agents against epidemic viruses through the downregulation of terminal sialic acid residues on glycans acting as a glyco-virus checkpoint to accelerate virus clearance.
View Article and Find Full Text PDF• Bat rotavirus strain MSLH14 (G3P[3]) can infect human cholangiocytes . • MSLH14 can cause suckling mice biliary atresia symptom, indicating potential public health risks. • MSLH14 have the potential for establishing a biliary atresia animal model.
View Article and Find Full Text PDFWe combined a CRISPR/Cas12a system with a hybridization chain reaction (HCR) to develop an ultrasensitive magnetic relaxation switching (MRS) biosensor for detecting viable (). Magnetic nanoparticles of two sizes (30 and 1000 nm: MNP and MNP, respectively) were coupled through HCR. The gene-activated CRISPR/Cas12a system released MNP from the MNP-HCR-MNP complex through a trans-cleavage reaction.
View Article and Find Full Text PDFA new microsporidian disease of the pond-reared ridgetail white prawn, Palaemon carinicauda, was found in China. Light microscopy, pathology, and scanning electron microscopy showed that the parasite infected the host's skeletal muscle tissue and formed spherical sporophorous vesicles (SPOVs). Electron microscopy revealed that its merogonic life stages developed in direct contact with the host cytoplasm.
View Article and Find Full Text PDFIntroduction: Porcine deltacoronavirus (PDCoV) is a zoonotic pathogen with a global distribution, capable of infecting both pigs and humans. To mitigate the risk of cross-species transmission and potential outbreaks, it is crucial to characterize novel antiviral genes, particularly those from human hosts.
Methods: This research used HIEC-6 to investigate PDCoV infection.
Objectives: Patients in cognitive behavioural therapy (CBT) who are high in interpersonal sensitivity may have difficulty fully engaging in treatment because therapy sessions require intimate interpersonal interactions that are especially uncomfortable for these individuals. The current study tests the hypotheses that patients who are high in interpersonal sensitivity benefit less from CBT for symptoms of depression and anxiety, show a slower rate of change in those symptoms, and are more likely to drop out of treatment.
Methods: Participants were 832 outpatients who received naturalistic CBT.
Porcine Deltacoronavirus (PDCoV) is a newly identified coronavirus that causes severe intestinal lesions in piglets. However, the understanding of how PDCoV interacts with human hosts is limited. In this study, we aimed to investigate the interactions between PDCoV and human intestinal cells (HIEC-6) by analyzing the transcriptome at different time points post-infection (12 h, 24 h, 48 h).
View Article and Find Full Text PDFColloidal quantum dot (CQD) infrared (IR) photodetectors can be fabricated and operated with larger spectral tunability, fewer limitations in terms of cooling requirements and substrate lattice matching, and at a potentially lower cost than detectors based on traditional bulk materials. Silver selenide (AgSe) has emerged as a promising sustainable alternative to current state-of-the-art toxic semiconductors based on lead, cadmium, and mercury operating in the IR. However, an impeding gap in available absorption bandwidth for AgSe CQDs exists in the short-wave infrared (SWIR) region due to degenerate doping by the environment, switching the CQDs from intrinsic interband semiconductors in the near-infrared (NIR) to intraband absorbing CQDs in the mid-wave infrared (MWIR).
View Article and Find Full Text PDFSevere fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne hemorrhagic fever disease with high fatality rate of 10%-20%. Vaccines or specific therapeutic measures remain lacking. Human interferon inducible transmembrane protein 3 (hIFITM3) is a broad-spectrum antiviral factor targeting viral entry.
View Article and Find Full Text PDFRotavirus (RV) is an important zoonosis virus, which can cause severe diarrhea and extra-intestinal infection. To date, some proteins or carbohydrates have been shown to participate in the attachment or internalization of RV, including HGBAs, Hsc70, and integrins. This study attempted to indicate whether there were other proteins that would participate in the entry of RV; thus, the RV VP4-interacting proteins were identified by proximity labeling.
View Article and Find Full Text PDFThe severe fever with thrombocytopenia syndrome virus (SFTSV) is a tick-borne human-infecting bunyavirus, which utilizes two envelope glycoproteins, Gn and Gc, to enter host cells. However, the structure and organization of these glycoproteins on virion surface are not yet known. Here we describe the structure of SFTSV determined by single particle reconstruction, which allows mechanistic insights into bunyavirus assembly at near-atomic resolution.
View Article and Find Full Text PDFNon-alcoholic steatohepatitis (NASH) is one of the most prevalent diseases worldwide; it is characterized by hepatic lipid accumulation, inflammation, and progressive fibrosis. Here, a Western diet combined with low-dose weekly carbon tetrachloride was fed to C57BL/6J mice for 12 weeks to build a NASH model to investigate the attenuating effects and possible mechanisms of LPJZ-658. Hepatic pathology, lipid profiles, and gene expression were assessed.
View Article and Find Full Text PDFAvipoxvirus 282E4 strain was extensively applied into recombinant vaccine vector to prevent other infectious diseases. However, little information on the genomic background, functional and genetic evolutionary of the isolate 282E4 strain was clarified. The results showed that the linear genome of avipoxvirus 282E4 was 308,826 bp, containing 313 open reading frames (ORFs) and 12 new predicted ORFs.
View Article and Find Full Text PDFThis study aimed to investigate the effects of LPJZ-658 on the production, meat quality, intestinal morphology, and cecal microbiota of broilers. White-feathered broilers (1 day old, n = 600) were randomly assigned to two groups and raised for six weeks. The individuals in the LPJZ-658 group were supplemented with 2.
View Article and Find Full Text PDFDeoxynivalenol is one of the most widely distributed mycotoxins in cereals and poses tremendous threats to the agricultural environment and public health. Therefore, it is particularly important to develop sensitive and interference-resistant deoxynivalenol analysis methods. Here, we establish a "Lollipop" particle counting immunoassay (LPCI) based on antigen-powered CRISPR-Cas12a dual signal amplification.
View Article and Find Full Text PDFUsing scanning transmission electron microscopy, along with electron energy loss spectroscopy, under cryogenic conditions, we demonstrate transition-metal dissolution from a layered Ni-rich oxide cathode material and subsequent diffusion into the bulk of a lithium thiophosphate solid electrolyte during electrochemical cycling. This problem has previously only been considered for liquid-electrolyte-based batteries.
View Article and Find Full Text PDFType III interferons (IFNLs) have critical roles in the host's innate immune system, also serving as the first line against pathogenic infections of mucosal surfaces. In mammals, several IFNLs have been reported; however, only limited data on the repertoire of IFNLs in avian species is available. Previous studies showed only one member in chicken (chIFNL3).
View Article and Find Full Text PDFCOVID-19 has globally spread to burden the medical system. Even with a massive vaccination, a mucosal vaccine offering more comprehensive and convenient protection is imminent. Here, a micro-sized vaccine based on recombinant (rLP) displaying spike or receptor-binding domain (RBD) was characterized as microparticles, and its safety and protective effects against SARS-CoV-2 were evaluated.
View Article and Find Full Text PDFSignal Transduct Target Ther
February 2023
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a severe global health crisis; its structural protein envelope (E) is critical for viral entry, budding, production, and induction of pathology which makes it a potential target for therapeutics against COVID-19. Here, we find that the E3 ligase RNF5 interacts with and catalyzes ubiquitination of E on the 63rd lysine, leading to its degradation by the ubiquitin-proteasome system (UPS). Importantly, RNF5-induced degradation of E inhibits SARS-CoV-2 replication and the RNF5 pharmacological activator Analog-1 alleviates disease development in a mouse infection model.
View Article and Find Full Text PDF