Discriminating different types of chaos is still a very challenging topic, even for dissipative three-dimensional systems for which the most advanced tool is the template. Nevertheless, getting a template is, by definition, limited to three-dimensional objects based on knot theory. To deal with higher-dimensional chaos, we recently introduced the templex combining a flow-oriented BraMAH cell complex and a directed graph (a digraph).
View Article and Find Full Text PDFA Human induced pluripotent stem cell (iPSC) line was generated from dermal fibroblasts of a patient affected with an autosomal recessive retinal dystrophy carrying the homozygous c.910-7G>A variant in UBAP1L. Three isogenic control iPSC lines derived from this affected subject line were created using CRISPR/Cas9 engineering.
View Article and Find Full Text PDFSince the early 1970s, numerous systems exhibiting an algebraic structure resembling that of the 1963 Lorenz system have been proposed. These systems have occasionally yielded the same attractor as the Lorenz system, while in other cases, they have not. Conversely, some systems that are evidently distinct from the Lorenz system, particularly in terms of symmetry, have resulted in attractors that bear a resemblance to the Lorenz attractor.
View Article and Find Full Text PDFSynchronization of chaotic systems is usually investigated for structurally equivalent systems typically coupled through linear diffusive functions. Here, we focus on a particular type of coupling borrowed from a nonlinear control theory and based on the optimal placement of a sensor-a device measuring the chosen variable-and an actuator-a device applying the actuating (control) signal to a variable's derivative-in the response system, leading to the so-called flat control law. We aim to investigate the dynamics produced by a response system that is flat coupled to a drive system and to determine the degree of generalized synchronization between them using statistical and topological arguments.
View Article and Find Full Text PDFThe ITM2B-related retinal dystrophy (ITM2B-RD) was identified within patients carrying the autosomal dominant variant [c.782A > C, p.(Glu261Ala)] in ITM2B from whom induced pluripotent stem cell (IPSC) lines were previously generated.
View Article and Find Full Text PDFThe incidence of campylobacteriosis has substantially increased over the past decade, notably in France. Secondary localizations complicating invasive infections are poorly described. We aimed to describe vascular infection or endocarditis caused by Campylobacter spp.
View Article and Find Full Text PDFControlling chaos is fundamental in many applications, and for this reason, many techniques have been proposed to address this problem. Here, we propose a strategy based on an optimal placement of the sensor and actuator providing global observability of the state space and global controllability to any desired state. The first of these two conditions enables the derivation of a model of the system by using a global modeling technique.
View Article and Find Full Text PDFBackground: The practice of regular physical activity can reduce the incidence of certain cancers (colon, breast, and prostate) and improve overall survival after treatment by reducing fatigue and the risk of relapse. This impact on survival has only been demonstrated in active patients with lymphoma before and after treatment. As poor general health status reduces the chances of survival and these patients are most likely to also have sarcopenia, it is important to be able to improve their physical function through adapted physical activity (APA) as part of supportive care management.
View Article and Find Full Text PDFThe theory of homologies introduces cell complexes to provide an algebraic description of spaces up to topological equivalence. Attractors in state space can be studied using Branched Manifold Analysis through Homologies: this strategy constructs a cell complex from a cloud of points in state space and uses homology groups to characterize its topology. The approach, however, does not consider the action of the flow on the cell complex.
View Article and Find Full Text PDFWe address the problem of retrieving the full state of a network of Rössler systems from the knowledge of the actual state of a limited set of nodes. The selection of nodes where sensors are placed is carried out in a hierarchical way through a procedure based on graphical and symbolic observability approaches applied to pairs of coupled dynamical systems. By using a map directly obtained from governing equations, we design a nonlinear network reconstructor that is able to unfold the state of non-measured nodes with working accuracy.
View Article and Find Full Text PDFThe COVID-19 pandemic disorganized the allogeneic stem cell transplantation activities all over the world, with the necessity to cryopreserve allografts to secure the procedure for both the recipient and the donor. Cryopreservation, usually anecdotal, has been used by all the French speaking centers; data collected from 24 centers were assessed in order to determine the impact of cryopreservation on the quality of allografts. Our analysis clearly demonstrates that increasing transit time (more than 48hours) is deleterious for CD34 recovery, legitimates the slight increase of the requested CD34 cell dose with respect to the average recovery rate as well as the importance of the quality control on the infused product.
View Article and Find Full Text PDFPatient-ventilator synchronization during non-invasive ventilation (NIV) can be assessed by visual inspection of flow and pressure waveforms but it remains time consuming and there is a large inter-rater variability, even among expert physicians. SyncSmart™ software developed by Breas Medical (Mölnycke, Sweden) provides an automatic detection and scoring of patient-ventilator asynchrony to help physicians in their daily clinical practice. This study was designed to assess performance of the automatic scoring by the SyncSmart software using expert clinicians as a reference in patient with chronic respiratory failure receiving NIV.
View Article and Find Full Text PDFControlling chaotic systems is very often investigated by using empirical laws, without taking advantage of the structure of the governing equations. There are two concepts, observability and controllability, which are inherited from control theory, for selecting the best placement of sensors and actuators. These two concepts can be combined (extended) into flatness, which provides the conditions to fulfill for designing a feedback linearization or another classical control law for which the system is always fully observable and fully controllable.
View Article and Find Full Text PDFIn 1994, Sprott [Phys. Rev. E 50, 647-650 (1994)] proposed a set of 19 different simple dynamical systems producing chaotic attractors.
View Article and Find Full Text PDFIntegral Membrane Protein 2 B (ITM2B) is a type II ubiquitous transmembrane protein which role remains unclear. ITM2B mutations have been associated with different disorders: mutations leading to longer mutant proteins have been reported in two distinct Alzheimer-like autosomal dominant disorders with early-onset progressive dementia and cerebellar ataxia. Both disorders share neurological features including severe cerebral amyloid angiopathy, non-neuritic plaques, and fibrillary tangles as in Alzheimer disease.
View Article and Find Full Text PDFSynchronization has been the subject of intense research during decades mainly focused on determining the structural and dynamical conditions driving a set of interacting units to a coherent state globally stable. However, little attention has been paid to the description of the dynamical development of each individual networked unit in the process towards the synchronization of the whole ensemble. In this paper we show how in a network of identical dynamical systems, nodes belonging to the same degree class, differentiate in the same manner, visiting a sequence of states of diverse complexity along the route to synchronization independently on the global network structure.
View Article and Find Full Text PDFWriting a history of a scientific theory is always difficult because it requires to focus on some key contributors and to "reconstruct" some supposed influences. In the 1970s, a new way of performing science under the name "chaos" emerged, combining the mathematics from the nonlinear dynamical systems theory and numerical simulations. To provide a direct testimony of how contributors can be influenced by other scientists or works, we here collected some writings about the early times of a few contributors to chaos theory.
View Article and Find Full Text PDFWhen a chaotic attractor is produced by a three-dimensional strongly dissipative system, its ultimate characterization is reached when a branched manifold-a template-can be used to describe the relative organization of the unstable periodic orbits around which it is structured. If topological characterization was completed for many chaotic attractors, the case of toroidal chaos-a chaotic regime based on a toroidal structure-is still challenging. We here investigate the topology of toroidal chaos, first by using an inductive approach, starting from the branched manifold for the Rössler attractor.
View Article and Find Full Text PDFObservability can determine which recorded variables of a given system are optimal for discriminating its different states. Quantifying observability requires knowledge of the equations governing the dynamics. These equations are often unknown when experimental data are considered.
View Article and Find Full Text PDFPurpose: To reappraise the presentation and the course of ITM2B-related retinal dystrophy and give further insights into ITM2B expression in the retina.
Methods: The clinical data of nine subjects with ITM2B-related retinal dystrophy were retrospectively reviewed. The genetic mutation was assessed for its influence on splicing in cultured fibroblasts.
Synchronization is a very generic phenomenon which can be encountered in a large variety of coupled dynamical systems. Being able to synchronize chaotic systems is strongly dependent on the nature of their coupling. Few attempts to explain such a dependency using observability and/or controllability were not fully satisfactory and synchronizability yet remained unexplained.
View Article and Find Full Text PDFWe propose a metric to characterize the complex behavior of a dynamical system and to distinguish between organized and disorganized complexity. The approach combines two quantities that separately assess the degree of unpredictability of the dynamics and the lack of describability of the structure in the Poincaré plane constructed from a given time series. As for the former, we use the permutation entropy S_{p}, while for the latter, we introduce an indicator, the structurality Δ, which accounts for the fraction of visited points in the Poincaré plane.
View Article and Find Full Text PDFLagrangian transport in the dynamical systems approach has so far been investigated disregarding the connection between the whole state space and the concept of observability. Key issues such as the definitions of Lagrangian and chaotic mixing are revisited under this light, establishing the importance of rewriting nonautonomous flow systems derived from a stream function in autonomous form, and of not restricting the characterization of their dynamics in subspaces. The observability of Lagrangian chaos from a reduced set of measurements is illustrated with two canonical examples: the Lorenz system derived as a low-dimensional truncation of the Rayleigh-Bénard convection equations and the driven double-gyre system introduced as a kinematic model of configurations observed in the ocean.
View Article and Find Full Text PDF