Publications by authors named "Letai A"

Cellular senescence contributes to a variety of pathologies associated with aging and is implicated as a cellular state in which cancer cells can survive treatment. Reported senolytic drug treatments act through varying molecular mechanisms, but heterogeneous efficacy across the diverse contexts of cellular senescence indicates a need for predictive biomarkers of senolytic activity. Using multi-parametric analyses of commonly reported molecular features of the senescent phenotype, we assayed a variety of models, including malignant and nonmalignant cells, using several triggers of senescence induction and found little univariate predictive power of these traditional senescence markers to identify senolytic drug sensitivity.

View Article and Find Full Text PDF

Cellular senescence is a stress response that cells can employ to resist cell death. Senescent cells rely on anti-apoptotic signaling for their survival, which can be targeted by senolytic agents, like the BCL-XL, BCL-2, BCL-W inhibitor ABT-263. However, the response to ABT-263 of senescent cancer cells ranges from highly sensitive to refractory.

View Article and Find Full Text PDF

In recent decades, millions of patients with cancer have been cured by chemotherapy alone. By 'cure', we mean that patients with cancers that would be fatal if left untreated receive a time-limited course of chemotherapy and their cancer disappears, never to return. In an era when hundreds of thousands of cancer genomes have been sequenced, a remarkable fact persists: in most patients who have been cured, we still do not fully understand the mechanisms underlying the therapeutic index by which the tumour cells are killed, but normal cells are somehow spared.

View Article and Find Full Text PDF
Article Synopsis
  • In a phase 1b study, the BCL2 inhibitor venetoclax was tested alongside a reduced chemotherapy regimen in patients with acute lymphoblastic leukemia (ALL) to determine the optimal dose while minimizing toxicity.
  • The study included 19 patients, with 90.9% of those newly diagnosed achieving complete remission and showing no deaths or serious toxicities within 60 days.
  • Results indicated that the combination therapy is well-tolerated and effective, especially in newly diagnosed patients, with a median disease-free survival of 54.6 months.
View Article and Find Full Text PDF

Approximately 50% of patients with hematologic malignancies relapse after chimeric antigen receptor (CAR) T cell treatment; mechanisms of failure include loss of CAR T persistence and tumor resistance to apoptosis. We hypothesized that both of these challenges could potentially be overcome by overexpressing one or more of the Bcl-2 family proteins in CAR T cells to reduce their susceptibility to apoptosis, both alone and in the presence of BH3 mimetics, which can be used to activate apoptotic machinery in malignant cells. We comprehensively investigated overexpression of different Bcl-2 family proteins in CAR T cells with different signaling domains as well as in different tumor types.

View Article and Find Full Text PDF
Article Synopsis
  • In many cancers, including acute myeloid leukemia (AML), the challenge of relapse often involves multidrug resistance (MDR) linked to changes in cancer cell genetics.
  • Researchers employed acute myeloid leukemia patient-derived xenografts (PDX) to explore drug sensitivity and resistance mechanisms, revealing that resistance often correlates with diminished mitochondrial apoptotic priming and affects responses to various drug types.
  • Their findings suggest that by using dynamic BH3 profiling (DBP), it's possible to identify effective drugs for patients experiencing drug-resistant relapses, highlighting the potential for this method in developing personalized treatment strategies.
View Article and Find Full Text PDF

In ancient Greek mythology, sirens were creatures of stunning beauty whose mystical songs led sailors to sail their boats onto hidden rocks and into total destruction. In this issue, Mason-Osann and colleagues present data in the context of acute myelogenous leukemia to suggest that while synergy may show initial attractions in drug combinations, it may carry with it hazards previously unforeseen. See related article by Mason-Osann et al.

View Article and Find Full Text PDF

We conducted a phase 1 trial assessing safety and efficacy of prophylactic maintenance therapy with venetoclax and azacitidine (Ven/Aza) for patients with high-risk myelodysplastic syndromes (MDS)/acute myeloid leukemia (AML) undergoing reduced intensity allogeneic stem cell transplantation (allo-SCT) after Ven and fludarabine/busulfan conditioning (Ven/FluBu2 allo-SCT) with tacrolimus and methotrexate as graft-versus-host disease (GVHD) prophylaxis. Among 27 patients who underwent Ven/FluBu2 allo-SCT (55.6% with prior Ven exposure, and 96% with positive molecular measurable residual disease), 22 received maintenance therapy with Aza 36 mg/m2 intravenously on days 1 to 5, and Ven 400 mg by mouth on days 1 to 14 per assigned dose schedule/level (42-day cycles × 8, or 28-day cycles × 12).

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) is a heterogeneous disease with limited treatment options. To characterize TNBC heterogeneity, we defined transcriptional, epigenetic, and metabolic subtypes and subtype-driving super-enhancers and transcription factors by combining functional and molecular profiling with computational analyses. Single-cell RNA sequencing revealed relative homogeneity of the major transcriptional subtypes (luminal, basal, and mesenchymal) within samples.

View Article and Find Full Text PDF

The importance of the stromal microenvironment in chronic lymphocytic leukemia (CLL) pathogenesis and drug resistance is well established. Despite recent advances in CLL therapy, identifying novel ways to disrupt interactions between CLL and its microenvironment may identify new combination partners for the drugs currently in use. To understand the role of microenvironmental factors on primary CLL cells, we took advantage of an observation that conditioned media (CM) collected from stroma was protective of CLL cells from spontaneous cell death ex vivo.

View Article and Find Full Text PDF

A potential cause of cancer relapse is pretreatment chemoresistant subpopulations. Identifying targetable features of subpopulations that are poorly primed for therapy-induced cell death may improve cancer therapy. Here, we develop and validate real-time BH3 profiling, a live and functional single-cell measurement of pretreatment apoptotic sensitivity that occurs upstream of apoptotic protease activation.

View Article and Find Full Text PDF

Malignant pleural mesothelioma (MPM) has relatively ineffective first/second-line therapy for advanced disease and only 18% five-year survival for early disease. Drug-induced mitochondrial priming measured by dynamic BH3 profiling identifies efficacious drugs in multiple disease settings. We use high throughput dynamic BH3 profiling (HTDBP) to identify drug combinations that prime primary MPM cells derived from patient tumors, which also prime patient derived xenograft (PDX) models.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR) T cell therapy is an FDA-approved treatment for several hematologic malignancies, yet not all patients respond to this treatment. While some resistance mechanisms have been identified, cell death pathways in target cancer cells remain underexplored. Impairing mitochondrial apoptosis via knockout of Bak and Bax, forced Bcl-2 and Bcl-XL expression, or caspase inhibition protected several tumor models from CAR T killing.

View Article and Find Full Text PDF

The tumor suppressor gene is the second most commonly deleted gene in cancer. Such deletions often include portions of the chromosome 10q23 locus beyond the bounds of itself, which frequently disrupts adjacent genes. Coincidental loss of -adjacent genes might impose vulnerabilities that could either affect patient outcome basally or be exploited therapeutically.

View Article and Find Full Text PDF

Purpose: Development of B-cell lymphoma 2 (BCL-2)-specific inhibitors poses unique challenges in drug design because of BCL-2 homology domain 3 (BH3) shared homology between BCL-2 family members and the shallow surface of their protein-protein interactions. We report herein discovery and extensive preclinical investigation of lisaftoclax (APG-2575).

Experimental Design: Computational modeling was used to design "lead" compounds.

View Article and Find Full Text PDF

Morphology, immunophenotype, cytogenetics, and genomics have long dominated diagnostics in acute myelogenous leukemia (AML). In this issue of Cancer Cell, Bottomly et al. demonstrate that combining the above with transcriptomics and ex vivo drug testing of patient myeloblasts yields novel diagnostic and therapeutic insights with the potential for clinical translation.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) remains difficult to treat and requires new therapeutic approaches. Potent inhibitors of the chromatin-associated protein MENIN have recently entered human clinical trials, opening new therapeutic opportunities for some genetic subtypes of this disease. Using genome-scale functional genetic screens, we identified IKAROS (encoded by IKZF1) as an essential transcription factor in KMT2A (MLL1)-rearranged (MLL-r) AML that maintains leukemogenic gene expression while also repressing pathways for tumor suppression, immune regulation and cellular differentiation.

View Article and Find Full Text PDF

Interest in harnessing natural killer (NK) cells for cancer immunotherapy is rapidly growing. However, efficacy of NK cell-based immunotherapy remains limited in most trials. Strategies to augment the killing efficacy of NK cells are thus much needed.

View Article and Find Full Text PDF

Resistance to mitochondrial apoptosis predicts inferior treatment outcomes in patients with diverse tumor types, including T-cell acute lymphoblastic leukemia (T-ALL). However, the genetic basis for variability in this mitochondrial apoptotic phenotype is poorly understood, preventing its rational therapeutic targeting. Using BH3 profiling and exon sequencing analysis of childhood T-ALL clinical specimens, we found that mitochondrial apoptosis resistance was most strongly associated with activating mutations of JAK3.

View Article and Find Full Text PDF

Purpose: Leiomyosarcoma (LMS) is a neoplasm characterized by smooth muscle differentiation, complex copy-number alterations, tumor suppressor loss, and the absence of recurrent driver mutations. Clinical management for advanced disease relies on the use of empiric cytotoxic chemotherapy with limited activity, and novel targeted therapies supported by preclinical research on LMS biology are urgently needed. A lack of fidelity of established LMS cell lines to their mesenchymal neoplasm of origin has limited translational understanding of this disease, and few other preclinical models have been established.

View Article and Find Full Text PDF