1-pyrrole-2,5-dione derivatives are known for their wide range of pharmacological properties, including anti-inflammatory and antimicrobial activities. This study aimed to synthesize new 3,4-dimethyl--pyrrole-2,5-dione derivatives - in the reaction of -substituted amidrazones with 2,3-dimethylmaleic anhydride and evaluate their structural and biological properties. Compounds - were studied by the H-C NMR two-dimensional techniques (HMQC, HMBC) and single-crystal X-ray diffraction (derivatives and ).
View Article and Find Full Text PDFOne of the main tactics to access C-N bonds from inactivated C-H functionalities is direct transition metal-supported aminations. Due to the often harsh reaction conditions, the current goal in the field is the search for more mild and sustainable transformations. Herein, we present the first solvent-free thermally induced C-N bond formation driven by Au(III) salts.
View Article and Find Full Text PDFAbstract: The series of new hydrazide derivatives were synthesized in reactions of N-substituted amidrazones with cyclic anhydrides as potential anti-inflammatory and antibacterial agents. The compounds were characterized by H-C two-dimensional NMR techniques, which revealed the presence of two tautomeric forms in DMSO- solutions, while the molecular structure of one species was confirmed by single-crystal X-ray diffraction. The anti-inflammatory effects of hydrazides on peripheral blood mononuclear cells were experimentally evaluated.
View Article and Find Full Text PDFRecently implemented hybrid density functional methods of calculating nuclear magnetic shielding using the two-component zeroth-order regular approximation approach (J. Phys. Chem.
View Article and Find Full Text PDF(1)H, (13)C and (15)N NMR studies of iron(II), ruthenium(II) and osmium(II) bis-chelated cationic complexes with 2,2':6',2″-terpyridine ([M(terpy)(2) ](2+) ; M = Fe, Ru, Os) were performed. Significant shielding of nitrogen-adjacent H(6) and deshielding of H(3'), H(4') protons were observed, both effects being mostly expressed for Fe(II) compounds. The metal-bonded nitrogens were shielded, this effect being much larger for the outer N(1), N(1″) than the inner N(1') atoms, and enhanced in the Fe(II) → Ru(II) → Os(II) series.
View Article and Find Full Text PDF(1)H, (13)C, (195)Pt and (15)N NMR studies of platinide(II) (M = Pd, Pt) chloride complexes with such alkyl and aryl derivatives of 2,2'-bipyridine and 1,10-phenanthroline as LL = 6,6'-dimethyl-bpy, 5,5'-dimethyl-bpy, 4,4'-di-tert-butyl-bpy, 2,9-dimethyl-phen, 2,9-dimethyl-4,7-diphenyl-phen, 3,4,7,8-tetramethyl-phen, having the general [M(LL)Cl(2)] formula were performed and the respective chemical shifts (δ(1H), δ(13C), δ(195Pt), δ(15N)) reported. (1)H high-frequency coordination shifts (Δ(coord)(1H) = δ(complex)(1H)-δ(ligand)(1H)) mostly pronounced for nitrogen-adjacent protons and methyl groups in the nearest adjacency of nitrogen, as well as (15)N low-frequency coordination shifts (Δ(coord)(15H) = δ(complex)(15H)-δ(ligand)(15H)) were discussed in relation to the molecular structures.
View Article and Find Full Text PDF(1)H, (13)C and (15)N NMR studies of iron(II), ruthenium(II) and osmium(II) tris-chelated cationic complexes with 2,2'-bipyridine and 1,10-phenanthroline of the general formula [M(LL)(3)](2+) (M = Fe, Ru, Os; LL = bpy, phen) were performed. Inconsistent literature (1)H signal assignments were corrected. Significant shielding of nitrogen-adjacent protons [H(6) in bpy, H(2) in phen] and metal-bonded nitrogens was observed, being enhanced in the series Ru(II) --> Os(II) --> Fe(II) for (1)H, Fe(II) --> Ru(II) --> Os(II) for (15)N and bpy --> phen for both nuclei.
View Article and Find Full Text PDF(1)H, (13)C and (15)N NMR studies of gold(III), palladium(II) and platinum(II) chloride complexes with dimethylpyridines (lutidines: 2,3-lutidine, 2,3lut; 2,4-lutidine, 2,4lut; 3,5-lutidine, 3,5lut; 2,6-lutidine, 2,6lut) and 2,4,6-trimethylpyridine (2,4,6-collidine, 2,4,6col) having general formulae [AuLCl(3)], trans-[PdL(2)Cl(2)] and trans-/cis-[PtL(2)Cl(2)] were performed and the respective chemical shifts (delta(1H), delta(13C), delta(15N)) reported. The deshielding of protons and carbons, as well as the shielding of nitrogens was observed. The (1)H, (13)C and (15)N NMR coordination shifts (Delta(1H) (coord), Delta(13C) (coord), Delta(15N) (coord); Delta(coord) = delta(complex) - delta(ligand)) were discussed in relation to some structural features of the title complexes, such as the type of the central atom [Au(III), Pd(II), Pt(II)], geometry (trans- or cis-), metal-nitrogen bond lengths and the position of both methyl groups in the pyridine ring system.
View Article and Find Full Text PDF(1)H, (13)C, (15)N and (195)Pt NMR studies of gold(III) and platinum(II) chloride organometallics with N(1),C(2')-chelated, deprotonated 2-phenylpyridine (2ppy*) of the formulae [Au(2ppy*)Cl(2)], trans(N,N)-[Pt(2ppy*)(2ppy)Cl] and trans(S,N)-[Pt(2ppy*)(DMSO-d(6))Cl] (formed in situ upon dissolving [Pt(2ppy*)(micro-Cl)](2) in DMSO-d(6)) were performed. All signals were unambiguously assigned by HMBC/HSQC methods and the respective (1)H, (13)C and (15)N coordination shifts (i.e.
View Article and Find Full Text PDF1H, 13C and 15N nuclear magnetic resonance studies of gold(III), palladium(II) and platinum(II) chloride complexes with phenylpyridines (PPY: 4-phenylpyridine, 4ppy; 3-phenylpyridine, 3ppy; and 2-phenylpyridine, 2ppy) having the general formulae [Au(PPY)Cl3], trans-/cis-[Pd(PPY)2Cl2] and trans-/cis-[Pt(PPY)2Cl2] were performed and the respective chemical shifts (delta1H, delta13C and delta15N) reported. 1H, 13C and 15N coordination shifts (i.e.
View Article and Find Full Text PDF(1)H, (13)C and (15)N NMR studies of gold(III), palladium(II) and platinum(II) chloride complexes with picolines, [Au(PIC)Cl(3)], trans-[Pd(PIC)(2)Cl(2)], trans/cis-[Pt(PIC)(2)Cl(2)] and [Pt(PIC)(4)]Cl(2), were performed. After complexation, the (1)H and (13)C signals were shifted to higher frequency, whereas the (15)N ones to lower (by ca 80-110 ppm), with respect to the free ligands. The (15)N shielding phenomenon was enhanced in the series [Au(PIC)Cl(3)] < trans-[Pd(PIC)(2)Cl(2)] < cis-[Pt(PIC)(2)Cl(2)] < trans-[Pt(PIC)(2)Cl(2)]; it increased following the Pd(II) --> Pt(II) replacement, but decreased upon the trans --> cis-transition.
View Article and Find Full Text PDFThe 15N NMR data for 105 complexes of Pd(II), Pt(II), Au(III), Co(III), Rh(III), Ir(III), Pd(IV), and Pt(IV) complexes with simple azines such as pyridine, 2,2'-bipyridine, 1,10-phenanthroline, quinoline, isoquinoline, 2,2'-biquinoline, 2,2':6', 2''-terpyridine and their alkyl or aryl derivatives have been reviewed. The 15N NMR coordination shifts, i.e.
View Article and Find Full Text PDFPd(II) and Pt(II) chloride complexes with LL = methyl cis-3,4-diamino-2,3,4,6-tetradeoxy-alpha-l-lyxo-hexopyranoside of the formulae [Pd(LL)Cl(2)] and [Pt(LL)Cl(2)], 1, were studied by (1)H, (2)H, (13)C, (15)N and (195)Pt NMR spectroscopy. These techniques were applied for characterization of the structure and ligand exchange dynamics, in case of diastereomeric species formed from 1 in DMSO-d(6), DMSO-h(6) and H(2)O; their general formula was [Pt(LL)XY](+) (X = Cl, Y = DMSO-d(6), 2a; X = DMSO-d(6), Y = Cl, 2b; X = Cl, Y = DMSO-h(6), 2a'; X = DMSO-h(6), Y = Cl, 2b'; X = Cl, Y = H(2)O, 3a; X = H(2)O, Y = Cl, 3b). Their theoretical structures and NMR parameters, calculated at the level of DFT approach, were also presented and compared to the experimental data.
View Article and Find Full Text PDF1H, 13C, and 15N NMR studies of platinide(II) (M=Pd, Pt) chloride complexes with quinolines (L=quinoline-quin, or isoquinoline-isoquin; LL=2,2'-biquinoline-bquin), having the general formulae trans-/cis-[ML2Cl2] and [M(LL)Cl2], were performed and the respective chemical shifts (delta1H, delta13C, delta15N) reported. 1H coordination shifts of various signs and magnitudes (Delta1Hcoord=delta1Hcomplex-delta1Hligand) are discussed in relation to the changes of diamagnetic contribution to the relevant 1H shielding constants. The comparison to the literature data for similar complexes containing auxiliary ligands other than chlorides exhibited a large dependence of delta1H parameters on electron density variations and ring-current effects (inductive and anisotropic phenomena).
View Article and Find Full Text PDF1H, 13C and 15N NMR studies of platinide(II) (M=Pd, Pt) chloride complexes with methyl and phenyl derivatives of 2,2'-bipyridine and 1,10-phenanthroline [LL=4,4'-dimethyl-2,2'-bipyridine (dmbpy); 4,4'-diphenyl-2,2'-bipyridine (dpbpy); 4,7-dimethyl-1,10-phenanthroline (dmphen); 4,7-diphenyl-1,10-phenanthroline (dpphen)] having a general [M(LL)Cl2] formula were performed and the respective chemical shifts (delta1H, delta13C, delta15N) reported. 1H high-frequency coordination shifts (Delta1Hcoord=delta1Hcomplex-delta1Hligand) were discussed in relation to the changes of diamagnetic contribution in the relevant 1H shielding constants. The comparison to literature data for similar [M(LL)(XX)], [M(LL)X2] and [M(LL)XY] coordination or organometallic compounds containing various auxiliary ligands revealed a large dependence of delta1H parameters on inductive and anisotropic effects.
View Article and Find Full Text PDFAu(III), Co(III) and Rh(III) chloride complexes with pyridine (py), 2,2'-bipyridine (bpy) and 1,10-phenanthroline (phen) of the general formulae [M1LCl3], trans-[M2L4Cl2]+, mer-[M2L3Cl3], [M1(LL)Cl2]+, cis-[M2(LL)2Cl2]+, where M1=Au; M2=Co, Rh; L=py; LL=bpy, phen, were studied by 1H--13C HMBC and 1H--15N HMQC/HSQC. The 1H, 13C and 15N coordination shifts (the latter from ca-78 to ca-107 ppm) are discussed in relation to the type of metal, electron configuration, coordination sphere geometry and the type of ligand. The 13C and 15N chemical shifts were also calculated by quantum-chemical NMR methods, which reproduced well the experimental tendencies concerning the coordination sphere geometry and the ligand type.
View Article and Find Full Text PDFA series of Pd and Pt chloride complexes with pyridine (py), 2,2'-bipyridine (bpy) and 1,10-phenanthroline (phen), of general formulae trans-/cis-[M(py)2Cl2], [M(py)4]Cl2, trans-/cis-[M(py)2Cl4], [M(bpy)Cl2], [M(bpy)Cl4], [M(phen)Cl2], [M(phen)Cl4], where M = Pd, Pt, was studied by 1H, 195Pt, and 15N NMR. The 90-140 ppm low-frequency 15N coordination shifts are discussed in terms of such structural features of the complexes as the type of platinide metal, oxidation state, coordination sphere geometry and the type of ligand. The results of quantum-chemical NMR calculations were compared with the experimental 15N coordination shifts, well reproducing their magnitude and correlation with the molecular structure.
View Article and Find Full Text PDF