Publications by authors named "Leszczynski M"

Sensory stimulation of the brain reverberates in its recurrent neuronal networks. However, current computational models of brain activity do not separate immediate sensory responses from intrinsic recurrent dynamics. We apply a vector-autoregressive model with external input (VARX), combining the concepts of "functional connectivity" and "encoding models", to intracranial recordings in humans.

View Article and Find Full Text PDF

Redox-active metal-organic frameworks (MOFs) are very promising materials due to their potential capabilities for postsynthetic modification aimed at tailoring their application properties. However, the research field related to redox-active MOFs is still relatively underdeveloped, which limits their practical application. We investigated the self-assembly process of Cr(II) ions and isophthalate (m-bdc) linkers, which have been previously demonstrated to yield 0D metal-organic polyhedra.

View Article and Find Full Text PDF

Nitroxides find application in various areas of chemistry, and a more in-depth understanding of factors controlling their reactivity with metal complexes is warranted to promote further developments. Here, we report on the effect of the metal centre Lewis acidity on both the distribution of the O- and N-centered spin density in 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) and turning TEMPO from the O- to N-radical mode scavenger in metal-TEMPO systems. We use Et(Cl)Zn/TEMPO model reaction system with tuneable reactivity in the solid state and solution.

View Article and Find Full Text PDF

Backgrounds: This study explored the contribution of peripheral blood markers in diagnosis and prognosis estimation of different stages of laryngeal dysplasia and early glottic cancer.

Methods: Retrospective analysis of clinical, histopathological and laboratory data of 220 patients including hemoglobin, neutrophil, lymphocyte, monocyte and platelet counts, neutrophil to lymphocyte ratio (NLR), platelet to lymphocyte ratio (PLR).

Results: The mean hemoglobin level and platelets count showed differences between histopathological stages of lesions ( = 0.

View Article and Find Full Text PDF

The mechanical strength of wood from Scots pine (), European larch (), and Norway spruce () was studied using static compression tests. The material was exposed under constant soaking in water with salinity of 7‱. The liquid mix was prepared according to a value roughly equivalent to the average salinity along the entire length of the Baltic Sea.

View Article and Find Full Text PDF

Our continuous visual experience in daily life is dominated by change. Previous research has focused on visual change due to stimulus motion, eye movements or unfolding events, but not their combined impact across the brain, or their interactions with semantic novelty. We investigate the neural responses to these sources of novelty during film viewing.

View Article and Find Full Text PDF

In this paper, the differences in mechanical strength tested during the static tensile and compression test of Scots pine ( L.), European larch () and Norway spruce () wood exposed to continuous soaking in water with a salinity of 7‱ were determined. The value of salinity corresponded to the average salinity on the Polish Baltic coast.

View Article and Find Full Text PDF

In natural "active" vision, humans and other primates use eye movements (saccades) to sample bits of information from visual scenes. In the visual cortex, non-retinal signals linked to saccades shift visual cortical neurons into a high excitability state as each saccade ends. The extent of this saccadic modulation outside of the visual system is unknown.

View Article and Find Full Text PDF

Polarization doping in a GaN-InN system with a graded composition layer was studied using ab initio simulations. The electric charge volume density in the graded concentration part was determined by spatial potential dependence. The emerging graded polarization charge was determined to show that it could be obtained from a polarization difference and the concentration slope.

View Article and Find Full Text PDF

Despite various applications of alkylzinc complexes supported by ,-bidentate ligands in chemistry and materials science, the corresponding organozinc amidinates still represent an insufficiently explored area. To gain a more in-depth understanding of factors controlling the structure and stability of alkylzinc amidinates, we selected benzamidinate and ,'-diphenylformamidinate ligands as model ,'-unsubstituted and ,'-diaryl substituted ligands, respectively, to systematically modify the secondary coordination sphere of the Zn center. A series of new alkylzinc amidinates has been synthesized and their molecular structures identified in both the solid state (single-crystal X-ray crystallography) and solution (NMR and FTIR spectroscopy).

View Article and Find Full Text PDF

Sample-based methods are a useful tool in analyzing the global behavior of multi-stable systems originating from various branches of science. Classical methods, such as bifurcation diagrams, Lyapunov exponents, and basins of attraction, often fail to analyze complex systems with many coexisting attractors. Thus, we have to apply a different strategy to understand the dynamics of such systems.

View Article and Find Full Text PDF

Neuronal coherence is thought to be a fundamental mechanism of communication in the brain, where synchronized field potentials coordinate synaptic and spiking events to support plasticity and learning. Although the spread of field potentials has garnered great interest, little is known about the spatial reach of phase synchronization, or neuronal coherence. Functional connectivity between different brain regions is known to occur across long distances, but the locality of synchronization across the neocortex is understudied.

View Article and Find Full Text PDF

The distinct research areas related to CO capture and mechanochemistry are both highly attractive in the context of green chemistry. However, merger of these two areas, , mechanochemical CO capture, is still in an early stage of development. Here, the application of biguanidine as an active species for CO capture is investigated using both solution-based and liquid-assisted mechanochemical approaches, which lead to a variety of biguanidinium carbonate and bicarbonate hydrogen-bonded networks.

View Article and Find Full Text PDF

The formation and diffusion of point defects have a detrimental impact on the functionality of devices in which a high quality AlN/GaN heterointerface is required. The present paper demonstrated the heights of the migration energy barriers of native point defects throughout the AlN/GaN heterointerface, as well as the corresponding profiles of energy bands calculated by means of density functional theory. Both neutral and charged nitrogen, gallium, and aluminium vacancies were studied, as well as their complexes with a substitutional III-group element.

View Article and Find Full Text PDF
Article Synopsis
  • Transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS) revealed some structural anomalies like oxygen contamination in the upper layers of the AlN, although the initial atomic layers display perfect alignment.
  • The study also finds that the AlN layer facilitates a two-dimensional electron gas (2DEG), characterized by high current transport and specific tunneling mechanisms, aligning well with theoretical expectations for AlN/GaN interfaces.
View Article and Find Full Text PDF

Introduction of photoactive building blocks into mixed-ligand coordination polymers appears to be a promising way to produce new advanced luminescent materials. However, rational design and self-assembly of the multi-component supramolecular systems is challenging from both a conceptual and synthetic perspective. Here, we report exploratory studies that investigate the potential of [Zn(q)][BuZn(OH)] complex (q = deprotonated 8-hydroxyquinoline) as an organozinc precursor as well as a mixed-ligand synthetic strategy for the preparation of new luminescent coordination polymers (CPs).

View Article and Find Full Text PDF

Metal-oxo clusters can serve as directional and rigid building units of coordination and noncovalent supramolecular assemblies. Therefore, an in-depth understanding of their multi-faceted chemistry is vital for the development of self-assembled solid-state structures of desired properties. Here we present a comprehensive comparative structural analysis of isostructural benzoate, benzamidate, and new benzamidinate zinc-oxo clusters incorporating the [O,O]-, [O,NH]- and [NH,NH]-anchoring donor centers, respectively.

View Article and Find Full Text PDF

In natural vision humans and other primates explore environment by active sensing, using saccadic eye movements to relocate the fovea and sample different bits of information multiple times per second. Saccades induce a phase reset of ongoing neuronal oscillations in primary and higher-order visual cortices and in the medial temporal lobe. As a result, neuron ensembles are shifted to a common state at the time visual input propagates through the system (i.

View Article and Find Full Text PDF

Understanding the factors governing the formation of supramolecular structures and phase transitions between various forms of molecular crystals is pivotal for developing dynamic, stimuli-responsive materials and polymorph-controlled syntheses. Here, we investigate the pressure-induced dynamic of both the intrinsic molecular structure and the supramolecular network of a predesigned polyhedral oxo-centered zinc cluster incorporating monoanionic N,N'-diphenylformamidinate and featuring N-bonded phenyl groups in close proximity to the primary coordination sphere. We demonstrate that the model oxo cluster is prone to undergoing pressure-induced conformational transformations of the secondary coordination sphere and simultaneous stepwise (initially every second polyhedral molecule undergoes the conformational transformations) and reversible transitions from an ambient phase α to high-pressure phases β and γ, as single-crystal-to-single-crystal events.

View Article and Find Full Text PDF

Solution-based syntheses are omnipresent in chemistry but are often associated with obvious disadvantages, and the search for new mild and green synthetic methods continues to be a hot topic. Here, comparative studies in four different reaction media were conducted, that is, the solid-state mechano- and slow-chemistry synthesis, melted phase, and solution protocols, and the impact of the employed solvent-free solid-state versus liquid-phase synthetic approaches was highlighted on a pool of products. A moderately exothermic model reaction system was chosen based on bis(pentafluorophenyl)zinc, (C F ) Zn, and 2,2,6,6-tetramethylpiperidinyl oxide (TEMPO) as a stable nitroxyl radical, anticipating that these reagents may offer a unique landscape for addressing kinetic and thermodynamic aspects of wet and solvent-free solid-state processes.

View Article and Find Full Text PDF

Rigid polyurethane foams were obtained using two types of renewable raw materials: bio-polyols and a cellulose filler (ARBOCEL P 4000 X, JRS Rettenmaier, Rosenberg, Germany). A polyurethane system containing 40 wt.% of rapeseed oil-based polyols was modified with the cellulose filler in amounts of 1, 2, and 3 php (per hundred polyols).

View Article and Find Full Text PDF

The reported study concerns the introduction of renewable raw materials into the formulation of rigid polyurethane foams in the quest for the sustainable development of polymer composites. In this study, rigid polyurethane foam composites were prepared using 75 wt.% of rapeseed oil-based polyol and 15 parts per hundred parts of polyol (php) of natural fillers such as chokeberry pomace, raspberry seeds, as well as hazelnut and walnut shells.

View Article and Find Full Text PDF

In this paper, the fire behavior of unsaturated polyester resin (UP) modified with L-histidinium dihydrogen phosphate-phosphoric acid (LHP), being a novel intumescent fire retardant (IFR), was investigated. Thermal and thermomechanical properties of the UP with different amounts of LHP (from 10 to 30 wt. %) were determined by thermogravimetric analysis (TG) as well as dynamic mechanical thermal analysis (DMTA).

View Article and Find Full Text PDF

In this work, we study the thermal degradation of In-rich InGaN quantum wells (QWs) and propose explanation of its origin based on the diffusion of metal vacancies. The structural transformation of the InGaN QWs is initiated by the formation of small initial voids created due to agglomeration of metal vacancies diffusing from the layers beneath the QW. The presence of voids in the QW relaxes the mismatch stress in the vicinity of the void and drives In atoms to diffuse to the relaxed void surroundings.

View Article and Find Full Text PDF

The aim of this paper is to give an experimental evidence that point defects (most probably gallium vacancies) induce decomposition of InGaN quantum wells (QWs) at high temperatures. In the experiment performed, we implanted GaN:Si/sapphire substrates with helium ions in order to introduce a high density of point defects. Then, we grew InGaN QWs on such substrates at temperature of 730 °C, what caused elimination of most (but not all) of the implantation-induced point defects expanding the crystal lattice.

View Article and Find Full Text PDF