The neurotrophic growth factor brain-derived neurotrophic factor (BDNF) plays a crucial role in various neurodegenerative and psychiatric diseases, such as Alzheimer's disease, schizophrenia and depression. BDNF has been proposed as a potential biomarker for diagnosis, prognosis and monitoring therapy. Understanding the factors influencing BDNF levels and whether they follow a circadian rhythm is essential for interpreting fluctuations in BDNF measurements.
View Article and Find Full Text PDFBrain-derived neurotrophic factor (BDNF) is a crucial mediator of neuronal plasticity. Here, we investigated the effects of controlled normobaric hypoxia (NH) combined with physical inactivity on BDNF blood levels and executive functions. A total of 25 healthy adults (25.
View Article and Find Full Text PDFSynaptic plasticity in the hippocampus underlies episodic memory formation, with dorsal hippocampus being instrumental for spatial memory whereas ventral hippocampus is crucial for emotional learning. Here, we studied how GABAergic inhibition regulates physiologically relevant low repeat spike timing-dependent LTP (t-LTP) at Schaffer collateral-CA1 synapses along the dorsoventral hippocampal axis. We used two t-LTP protocols relying on only 6 repeats of paired spike-firing in pre- and postsynaptic cells within 10 s that differ in postsynaptic firing patterns.
View Article and Find Full Text PDFBackground: Animal and human studies have shown that exposure to hypoxia can increase brain-derived neurotrophic factor (BDNF) protein transcription and reduce systematic inflammatory cytokine response. Therefore, the aim of this study was to investigate the acute and chronic effects of intermittent hypoxic-hyperoxic exposure (IHHE) prior to aerobic exercise on BDNF, interleukin-6 (IL-6), and C-reactive protein (CRP) blood levels in geriatric patients.
Patients And Methods: Twenty-five geriatric patients (83.
Synaptotoxic Aβ oligomers are thought to play a major role in the early pathology of Alzheimer´s disease (AD). However, the molecular mechanisms involved in Aβ-induced synaptic dysfunction and synapse damage remain largely unclear. Previously, Aβ synaptotoxicity has been reported to be enhanced by increased levels of a C-terminal fragment of the synaptic adhesion molecule N-cadherin that is generated by proteolytic shedding of the extracellular domains [1].
View Article and Find Full Text PDFBackground: Due to the growing gap between the demand and supply of therapeutic services for people suffering from depression, with this study, we are investigating the effectiveness and factors of influence of new approaches in group treatments for depression. Two previous studies have already identified bouldering psychotherapy (BPT) as an effective option. It combines psychotherapeutic interventions with action- and body-oriented bouldering exercises.
View Article and Find Full Text PDFAdv Physiol Educ
September 2023
The core concepts of physiology, as first published in this journal in 2011, not only provide a noteworthy teaching approach but also encourage reflection on the fundamentals of physiology. Unfortunately, a fundamental flaw has crept into the core concept of flow down gradients. Fluids do not generally flow from high to low pressure, as claimed, but only because of a specific pressure difference, that is, the perfusion pressure.
View Article and Find Full Text PDFActa Neuropathol Commun
December 2022
Semantic dementia (SD) is a clinical subtype of frontotemporal dementia consistent with the neuropathological diagnosis frontotemporal lobar degeneration (FTLD) TDP type C, with characteristic round TDP-43 protein inclusions in the dentate gyrus. Despite this striking clinicopathological concordance, the pathogenic mechanisms are largely unexplained forestalling the development of targeted therapeutics. To address this, we carried out laser capture microdissection of the dentate gyrus of 15 SD patients and 17 non-demented controls, and assessed relative protein abundance changes by label-free quantitative mass spectrometry.
View Article and Find Full Text PDFThe neurotrophin brain-derived neurotrophic factor (BDNF) stimulates adult neurogenesis, but also influences structural plasticity and function of serotonergic neurons. Both, BDNF/TrkB signaling and the serotonergic system modulate behavioral responses to stress and can lead to pathological states when dysregulated. The two systems have been shown to mediate the therapeutic effect of antidepressant drugs and to regulate hippocampal neurogenesis.
View Article and Find Full Text PDFMyasthenia gravis is an autoimmune disease affecting neuromuscular transmission and causing skeletal muscle weakness. Additionally, systemic inflammation, cognitive deficits and autonomic dysfunction have been described. However, little is known about myasthenia gravis-related reorganization of the brain.
View Article and Find Full Text PDFIn this work, we highlight an electrophysiological feature often observed in recordings from mouse CA1 pyramidal cells that has so far been ignored by experimentalists and modelers. It consists of a large and dynamic increase in the depolarization baseline (i.e.
View Article and Find Full Text PDFBackground: Accumulating evidence shows that physical exercise has a positive effect on the release of neurotrophic factors and myokines. However, evidence regarding the optimal type of physical exercise for these release is still lacking. The aim of this study was to assess the acute and chronic effects of open-skill exercise (OSE) compared to closed-skill exercise (CSE) on serum and plasma levels of brain derived neurotrophic factor (BDNF, BDNF), and serum levels of insulin like growth factor 1 (IGF-1), and interleukin 6 (IL-6) in healthy older adults.
View Article and Find Full Text PDFHigh-frequency stimulation induced long-term potentiation (LTP) and low-frequency stimulation induced LTD are considered as cellular models of memory formation. Interestingly, spike timing-dependent plasticity (STDP) can induce equally robust timing-dependent LTP (t-LTP) and t-LTD in response to low frequency repeats of coincident action potential (AP) firing in presynaptic and postsynaptic cells. Commonly, STDP paradigms relying on 25-100 repeats of coincident AP firing are used to elicit t-LTP or t-LTD, but the minimum number of repeats required for successful STDP is barely explored.
View Article and Find Full Text PDFNeurotrophins are secreted proteins that control survival, differentiation, and synaptic plasticity. While mature neurotrophins regulate these functions via tyrosine kinase signaling (Trk), uncleaved pro-neurotrophins bind preferentially to the p75 neurotrophin receptor (p75NTR) and often exert opposite effects to those of mature neurotrophins. In the amygdala, brain-derived neurotrophic factor (BDNF) enables long-term potentiation as well as fear and fear extinction learning.
View Article and Find Full Text PDFBrain-derived neurotrophic factor (BDNF) is implicated in a number of processes that are crucial for healthy functioning of the brain. Schizophrenia is associated with low BDNF levels in the brain and blood, however, not much is known about BDNF's role in the different symptoms of schizophrenia. Here, we used BDNF-haploinsufficient (BDNF) mice to investigate the role of BDNF in different mouse behavioral endophenotypes of schizophrenia.
View Article and Find Full Text PDFBDNF plays a crucial role in the regulation of synaptic plasticity. It is synthesized as a precursor (proBDNF) that can be proteolytically cleaved to mature BDNF (mBDNF). Previous studies revealed a bidirectional mode of BDNF actions, where long-term potentiation (LTP) was mediated by mBDNF through tropomyosin related kinase (Trk) B receptors whereas long-term depression (LTD) depended on proBDNF/p75 neurotrophin receptor (p75NTR) signaling.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a multifaceted neurodegenerative disorder characterized by progressive and irreversible cognitive decline, with no disease-modifying therapy until today. Spike timing-dependent plasticity (STDP) is a Hebbian form of synaptic plasticity, and a strong candidate to underlie learning and memory at the single neuron level. Although several studies reported impaired long-term potentiation (LTP) in the hippocampus in AD mouse models, the impact of amyloid-β (Aβ) pathology on STDP in the hippocampus is not known.
View Article and Find Full Text PDFTherapeutic approaches providing effective medication for Alzheimer's disease (AD) patients after disease onset are urgently needed. Previous studies in AD mouse models suggested that physical exercise or changed lifestyle can delay AD-related synaptic and memory dysfunctions when treatment started in juvenile animals long before onset of disease symptoms, while a pharmacological treatment that can reverse synaptic and memory deficits in AD mice was thus far not identified. Repurposing food and drug administration (FDA)-approved drugs for treatment of AD is a promising way to reduce the time to bring such medication into clinical practice.
View Article and Find Full Text PDFThe neurotrophic factor BDNF is an important regulator for the development of brain circuits, for synaptic and neuronal network plasticity, as well as for neuroregeneration and neuroprotection. Up- and downregulations of BDNF levels in human blood and tissue are associated with, e.g.
View Article and Find Full Text PDFThe amygdala is a central hub for fear learning assessed by Pavlovian fear conditioning. Indeed, the prevailing hypothesis that learning and memory are mediated by changes in synaptic strength was shown most convincingly at thalamic and cortical afferents to the lateral amygdala. The neurotrophin brain-derived neurotrophic factor (BDNF) is known to regulate synaptic plasticity and memory formation in many areas of the mammalian brain including the amygdala, where BDNF signalling via tropomyosin-related kinase B (TrkB) receptors is prominently involved in fear learning.
View Article and Find Full Text PDFBackground: Spine loss is a hallmark of Alzheimer´s and other neurodegenerative diseases, and testing candidate therapeutic drugs needs quantitative analysis of dendritic spine densities. Golgi-Cox impregnation of neurons is a classical method to visualize dendritic spines in diseased brains. Importantly, at early disease stages spine loss occurs locally in the vicinity of amyloid plaques, and concomitant fluorescence labeling of amyloid plaques is required to detect local spine damage.
View Article and Find Full Text PDF