Publications by authors named "Lespinet O"

Background: Pervasive translation is a widespread phenomenon that plays a critical role in the emergence of novel microproteins, but the diversity of translation patterns contributing to their generation remains unclear. Based on 54 ribosome profiling (Ribo-Seq) datasets, we investigated the yeast Ribo-Seq landscape using a representation framework that allows the comprehensive inventory and classification of the entire diversity of Ribo-Seq signals, including non-canonical ones.

Results: We show that if coding regions occupy specific areas of the Ribo-Seq landscape, noncoding regions encompass a wide diversity of Ribo-Seq signals and, conversely, populate the entire landscape.

View Article and Find Full Text PDF

Microbial specialized metabolite biosynthetic gene clusters (SMBGCs) are a formidable source of natural products of pharmaceutical interest. With the multiplication of genomic data available, very efficient bioinformatic tools for automatic SMBGC detection have been developed. Nevertheless, most of these tools identify SMBGCs based on sequence similarity with enzymes typically involved in specialised metabolism and thus may miss SMBGCs coding for undercharacterised enzymes.

View Article and Find Full Text PDF

We report here a new application, CustomProteinSearch (CusProSe), whose purpose is to help users to search for proteins of interest based on their domain composition. The application is customizable. It consists of two independent tools, IterHMMBuild and ProSeCDA.

View Article and Find Full Text PDF

Interspecies RNA-Seq datasets are increasingly common, and have the potential to answer new questions about the evolution of gene expression. Single-species differential expression analysis is now a well-studied problem that benefits from sound statistical methods. Extensive reviews on biological or synthetic datasets have provided the community with a clear picture on the relative performances of the available methods in various settings.

View Article and Find Full Text PDF

This study investigates the importance of the structural context in the formation of a type I/II A-minor motif. This very frequent structural motif has been shown to be important in the spatial folding of RNA molecules. We developed an automated method to classify A-minor motif occurrences according to their 3D context similarities, and we used a graph approach to represent both the structural A-minor motif occurrences and their classes at different scales.

View Article and Find Full Text PDF

The noncoding genome plays an important role in de novo gene birth and in the emergence of genetic novelty. Nevertheless, how noncoding sequences' properties could promote the birth of novel genes and shape the evolution and the structural diversity of proteins remains unclear. Therefore, by combining different bioinformatic approaches, we characterized the fold potential diversity of the amino acid sequences encoded by all intergenic open reading frames (ORFs) of with the aim of (1) exploring whether the structural states' diversity of proteomes is already present in noncoding sequences, and (2) estimating the potential of the noncoding genome to produce novel protein bricks that could either give rise to novel genes or be integrated into pre-existing proteins, thus participating in protein structure diversity and evolution.

View Article and Find Full Text PDF

Bacteria of the genus Streptomyces are prolific producers of specialized metabolites, including antibiotics. The linear chromosome includes a central region harboring core genes, as well as extremities enriched in specialized metabolite biosynthetic gene clusters. Here, we show that chromosome structure in Streptomyces ambofaciens correlates with genetic compartmentalization during exponential phase.

View Article and Find Full Text PDF

possess a large linear chromosome (6-12 Mb) consisting of a conserved central region flanked by variable arms covering several megabases. In order to study the evolution of the chromosome across evolutionary times, a representative panel of strains and species (125) whose chromosomes are completely sequenced and assembled was selected. The pan-genome of the genus was modelled and shown to be open with a core-genome reaching 1018 genes.

View Article and Find Full Text PDF

The genomes of 11 conspecific strains, i.e., from the same species and inhabiting the same ecological niche, were sequenced and assembled.

View Article and Find Full Text PDF

In this work, by comparing genomes of closely related individuals of isolated at a spatial microscale (millimeters or centimeters), we investigated the extent and impact of horizontal gene transfer in the diversification of a natural population. We show that despite these conspecific strains sharing a recent common ancestor, all harbored significantly different gene contents, implying massive and rapid gene flux. The accessory genome of the strains was distributed across insertion/deletion events (indels) ranging from one to several hundreds of genes.

View Article and Find Full Text PDF

Specialized metabolites are of great interest due to their possible industrial and clinical applications. The increasing number of antimicrobial resistant infectious agents is a major health threat and therefore, the discovery of chemical diversity and new antimicrobials is crucial. Extensive genomic data from spp.

View Article and Find Full Text PDF

We present a new educational initiative called Meet-U that aims to train students for collaborative work in computational biology and to bridge the gap between education and research. Meet-U mimics the setup of collaborative research projects and takes advantage of the most popular tools for collaborative work and of cloud computing. Students are grouped in teams of 4-5 people and have to realize a project from A to Z that answers a challenging question in biology.

View Article and Find Full Text PDF

Background: The ascomycete fungus Colletotrichum higginsianum causes anthracnose disease of brassica crops and the model plant Arabidopsis thaliana. Previous versions of the genome sequence were highly fragmented, causing errors in the prediction of protein-coding genes and preventing the analysis of repetitive sequences and genome architecture.

Results: Here, we re-sequenced the genome using single-molecule real-time (SMRT) sequencing technology and, in combination with optical map data, this provided a gapless assembly of all twelve chromosomes except for the ribosomal DNA repeat cluster on chromosome 7.

View Article and Find Full Text PDF

The sessile nature of plants forced them to evolve mechanisms to prioritize their responses to simultaneous stresses, including colonization by microbes or nutrient starvation. Here, we compare the genomes of a beneficial root endophyte, Colletotrichum tofieldiae and its pathogenic relative C. incanum, and examine the transcriptomes of both fungi and their plant host Arabidopsis during phosphate starvation.

View Article and Find Full Text PDF

Background: In comparative genomics, orthologs are used to transfer annotation from genes already characterized to newly sequenced genomes. Many methods have been developed for finding orthologs in sets of genomes. However, the application of different methods on the same proteome set can lead to distinct orthology predictions.

View Article and Find Full Text PDF

The emergence of Next Generation Sequencing generates an incredible amount of sequence and great potential for new enzyme discovery. Despite this huge amount of data and the profusion of bioinformatic methods for function prediction, a large part of known enzyme activities is still lacking an associated protein sequence. These particular activities are called "orphan enzymes".

View Article and Find Full Text PDF

Background: Candida glabrata follows C. albicans as the second or third most prevalent cause of candidemia worldwide. These two pathogenic yeasts are distantly related, C.

View Article and Find Full Text PDF

The recent availability of genome sequences of four different Fusarium species offers the opportunity to perform extensive comparative analyses, in particular of repeated sequences. In a recent work, the overall content of such sequences in the genomes of three phylogenetically related Fusarium species, F. graminearum, F.

View Article and Find Full Text PDF

Background: The development of new microarray technologies makes custom long oligonucleotide arrays affordable for many experimental applications, notably gene expression analyses. Reliable results depend on probe design quality and selection. Probe design strategy should cope with the limited accuracy of de novo gene prediction programs, and annotation up-dating.

View Article and Find Full Text PDF

Background: More and more completely sequenced fungal genomes are becoming available and many more sequencing projects are in progress. This deluge of data should improve our knowledge of the various primary and secondary metabolisms of Fungi, including their synthesis of useful compounds such as antibiotics or toxic molecules such as mycotoxins. Functional annotation of many fungal genomes is imperfect, especially of genes encoding enzymes, so we need dedicated tools to analyze their metabolic pathways in depth.

View Article and Find Full Text PDF

We examined chlorinated drinking water samples from three different surface water treatment plants for bacterial 16S rDNA diversity using the serial analysis of V6 ribosomal sequence tag (SARST-V6) method. A considerable degree of diversity was observed in each sample, with an estimated richness ranging from 173 to 333 phylotypes. The community structure shows that there are differences in bacterial evenness between sampled sites.

View Article and Find Full Text PDF

Background: It has been repeatedly observed that gene order is rapidly lost in prokaryotic genomes. However, persistent synteny blocks are found when comparing more or less distant species. These genes that remain consistently adjacent are appealing candidates for the study of genome evolution and a more accurate definition of their functional role.

View Article and Find Full Text PDF

We have performed a genome-wide analysis of the mimp family of miniature inverted-repeat transposable elements, taking advantage of the recent release of the F. oxysporum genome sequence. Using different approaches, we detected 103 mimp elements, corresponding to 75 nonredundant copies, half of which are located on a single small chromosome.

View Article and Find Full Text PDF

Background: The dung-inhabiting ascomycete fungus Podospora anserina is a model used to study various aspects of eukaryotic and fungal biology, such as ageing, prions and sexual development.

Results: We present a 10X draft sequence of P. anserina genome, linked to the sequences of a large expressed sequence tag collection.

View Article and Find Full Text PDF