Publications by authors named "Lesong Wei"

Motivation: Macrocyclic peptides hold great promise as therapeutics targeting intracellular proteins. This stems from their remarkable ability to bind flat protein surfaces with high affinity and specificity while potentially traversing the cell membrane. Research has already explored their use in developing inhibitors for intracellular proteins, such as KRAS, a well-known driver in various cancers.

View Article and Find Full Text PDF

Identifying drug-target affinity (DTA) has great practical importance in the process of designing efficacious drugs for known diseases. Recently, numerous deep learning-based computational methods have been developed to predict drug-target affinity and achieved impressive performance. However, most of them construct the molecule (drug or target) encoder without considering the weights of features of each node (atom or residue).

View Article and Find Full Text PDF

Recently, peptide-based drugs have gained unprecedented interest in discovering and developing antifungal drugs due to their high efficacy, broad-spectrum activity, low toxicity and few side effects. However, it is time-consuming and expensive to identify antifungal peptides (AFPs) experimentally. Therefore, computational methods for accurately predicting AFPs are highly required.

View Article and Find Full Text PDF

Background: Cell-penetrating peptides (CPPs) have received considerable attention as a means of transporting pharmacologically active molecules into living cells without damaging the cell membrane, and thus hold great promise as future therapeutics. Recently, several machine learning-based algorithms have been proposed for predicting CPPs. However, most existing predictive methods do not consider the agreement (disagreement) between similar (dissimilar) CPPs and depend heavily on expert knowledge-based handcrafted features.

View Article and Find Full Text PDF

The task of predicting drug-target affinity (DTA) plays an increasingly important role in the early stage of in silico drug discovery and development. Currently, a variety of machine learning-based methods have been presented for DTA prediction and achieved outstanding performance, which is beneficial for speeding up the development of new drugs. However, most convolutional neural networks (CNNs) based methods ignore the significance of information from CNN layers with different scales for DTA prediction.

View Article and Find Full Text PDF

Elucidating the mechanisms of Compound-Protein Interactions (CPIs) plays an essential role in drug discovery and development. Many computational efforts have been done to accelerate the development of this field. However, the current predictive performance is still not satisfactory, and existing methods consider only protein and compound features, ignoring their interactive information.

View Article and Find Full Text PDF

Motivation: Recently, peptides have emerged as a promising class of pharmaceuticals for various diseases treatment poised between traditional small molecule drugs and therapeutic proteins. However, one of the key bottlenecks preventing them from therapeutic peptides is their toxicity toward human cells, and few available algorithms for predicting toxicity are specially designed for short-length peptides.

Results: We present ToxIBTL, a novel deep learning framework by utilizing the information bottleneck principle and transfer learning to predict the toxicity of peptides as well as proteins.

View Article and Find Full Text PDF

Owing to its superior performance, the Transformer model, based on the 'Encoder- Decoder' paradigm, has become the mainstream model in natural language processing. However, bioinformatics has embraced machine learning and has led to remarkable progress in drug design and protein property prediction. Cell-penetrating peptides (CPPs) are a type of permeable protein that is a convenient 'postman' in drug penetration tasks.

View Article and Find Full Text PDF

The prediction of peptide secondary structures is fundamentally important to reveal the functional mechanisms of peptides with potential applications as therapeutic molecules. In this study, we propose a multi-view deep learning method named Peptide Secondary Structure Prediction based on Multi-View Information, Restriction and Transfer learning (PSSP-MVIRT) for peptide secondary structure prediction. To sufficiently exploit discriminative information, we introduce a multi-view fusion strategy to integrate different information from multiple perspectives, including sequential information, evolutionary information and hidden state information, respectively, and generate a unified feature space.

View Article and Find Full Text PDF

Motivation: DNA N4-methylcytosine (4mC) and N6-methyladenine (6mA) are two important DNA modifications and play crucial roles in a variety of biological processes. Accurate identification of the modifications is essential to better understand their biological functions and mechanisms. However, existing methods to identify 4mA or 6mC sites are all single tasks, which demonstrates that they can identify only a certain modification in one species.

View Article and Find Full Text PDF

Motivation: Peptides have recently emerged as promising therapeutic agents against various diseases. For both research and safety regulation purposes, it is of high importance to develop computational methods to accurately predict the potential toxicity of peptides within the vast number of candidate peptides.

Results: In this study, we proposed ATSE, a peptide toxicity predictor by exploiting structural and evolutionary information based on graph neural networks and attention mechanism.

View Article and Find Full Text PDF