Metal nanoparticles can photosensitize two-dimensional metal oxides, facilitating their electrical connection to devices and enhancing their abilities in catalysis and sensing. In this study, we investigated how individual silver nanoparticles interact with two-dimensional tin oxide and antimony-doped indium oxide using electron energy loss spectroscopy (EELS). The measurement of the spectral line width of the longitudinal plasmon resonance of the nanoparticles in absence and presence of 2D materials allowed us to quantify the contribution of chemical interface damping to the line width.
View Article and Find Full Text PDFHerein we report the synthesis and characterization of spinel copper gallate (CuGaO) nanocrystals (NCs) with an average size of 3.7 nm via a heat-up colloidal reaction. CuGaO NCs have a band gap of ∼2.
View Article and Find Full Text PDFPlasmon-induced energy and charge transfer from metal nanostructures hold great potential for harvesting solar energy. Presently, the efficiencies of charge-carrier extraction are still low due to the competitive ultrafast mechanisms of plasmon relaxation. Using single-particle electron energy loss spectroscopy, we correlate the geometrical and compositional details of individual nanostructures to their carrier extraction efficiencies.
View Article and Find Full Text PDF