Carbon nanodots (CDs) have drawn significant attention for their potential uses in diagnostic and therapeutic applications due to their small size, tissue biocompatibility, stable photoluminescence, and modifiable surface groups. However, the effect of cargo molecules on CD photoluminescence and their ability to interact with tissues are not fully understood. Our previous work has shown that CDs produced from the acidic oxidation of carbon nanopowder can bind to mineralized bone with high affinity and specificity in a zebrafish animal model system.
View Article and Find Full Text PDFCurrent treatments for osteoporosis and other bone degenerative diseases predominately rely on preventing further bone erosion rather than restoring bone mass, as the latter treatments can unintentionally trigger cancer development by undiscriminatingly promoting cell proliferation. One approach to circumvent this problem is through the development of novel chemical carriers to deliver drug agents specifically to bones. We have recently shown that carbon nanodots (C-dots) synthesized from carbon nanopowder can bind with high affinity and specificity to developing bones in the larval zebrafish.
View Article and Find Full Text PDF