Publications by authors named "Lesly Carmona Sarabia"

Gracilioether M () and 11,12-dihydrogracilioether M (), two polyketides with a [2(5H)-furanylidene]ethanoate moiety, along with known plakortone G () and its new naturally occurring derivative 9,10-dihydroplakortone G (), were isolated from the Caribbean marine sponge . The structures and absolute configuration of , , and were characterized by analysis of HRESIMS and NMR spectroscopic data, chemical derivatization, and side-by-side comparisons with published NMR data of related analogs. Compounds and and a mixture of and were evaluated for cytotoxicity against MCF-7 human breast cancer cells.

View Article and Find Full Text PDF

Poly(methyl methacrylate) (PMMA) is considered an attractive substrate material for fabricating wearable skin sensors such as fitness bands and microfluidic devices. Despite its widespread use, inflammatory and allergic responses have been attributed to the use of this material. Therefore, the main objective of this study was to obtain a comprehensive understanding of potential biological effects triggered by PMMA at non-cytotoxic concentrations using in vitro models of NIH3T3 fibroblasts and reconstructed human epidermis (RhE).

View Article and Find Full Text PDF

Extended bisphosphonate-based coordination polymers (BPCPs) were produced when 1,1'-biphenyl-4,4'-bisphosphonic acid (BPBPA), the analogue of 1,1'-biphenyl-4,4'-dicarboxylic acid (BPDC), reacted with bioactive metals (Ca, Zn, and Mg). BPBPA-Ca (11 Å × 12 Å), BPBPA-Zn (10 Å × 13 Å), and BPBPA-Mg (8 Å × 11 Å) possess channels that allow the encapsulation of letrozole (LET), an antineoplastic drug that combined with BPs treats breast-cancer-induced osteolytic metastases (OM). Dissolution curves obtained in phosphate-buffered saline (PBS) and fasted-state simulated gastric fluid (FaSSGF) demonstrate the pH-dependent degradation of BPCPs.

View Article and Find Full Text PDF

The coordination between benzene 1,4-bis(bisphosphonic acid) (BBPA), the bisphosphonate (BP) analogue of benzene 1,4-dicarboxylic acid (BDC), and bioactive metals led to the formation of extended bisphosphonate-based coordination polymers (BPCPs). Four distinct crystalline phases were obtained, namely, BBPA-Ca forms I and II, BBPA-Zn, and BBPA-Mg. Among these, BBPA-Ca forms I (7 × 9 Å) and II (8 × 12 Å) possess channels large enough to encapsulate 5-fluorouracil (5-FU), a drug prescribed in combination with BPs to treat breast cancer-induced osteolytic metastases (OM).

View Article and Find Full Text PDF

Coordination of clinically employed bisphosphonate, risedronate (RISE), to bioactive metals, Ca, Mg, and Zn, allowed the formation of bisphosphonate-based coordination complexes (BPCCs). Three RISE-based BPCCs, RISE-Ca, RISE-Mg, and RISE-Zn, were produced, and their structures were elucidated by single crystal X-ray diffraction. Interestingly, the addition of an auxiliary ligand, etidronic acid (HEDP), resulted in the recrystallized protonated form of the ligand, H-RISE.

View Article and Find Full Text PDF

Formation of several materials, denoted as bisphosphonate-based coordination complexes (BPCCs), resulted from the reaction between clinically employed bisphosphonate, zoledronate (ZOLE) and bioactive metals (M = Ca, Mg and Zn). Six ZOLE-based BPCCs were synthesized using different variables (M : ZOLE molar ratio, temperature, pH, and anion) and their structures were elucidated by single crystal X-ray diffraction (ZOLE-Ca forms I and II, ZOLE-Mg forms I and II, and ZOLE-Zn forms I and II). The dissolution of the ZOLE-based BPCCs was compared to that of ZOLE (Reclast®).

View Article and Find Full Text PDF

The hydrothermal reaction between bioactive metal (Ca2+, Zn2+, and Mg2+) salts and a clinically utilized bisphosphonate, alendronate (ALEN), promotes the formation of several materials denominated as bisphosphonate-based coordination complexes (BPCCs). The systematic exploration of the effect of three variables, M2+/ALEN molar ratio, temperature, and pH, on the reaction yielded an unprecedented number of materials of enough crystal quality for structural elucidation. Five crystal structures were unveiled by single crystal X-ray diffraction (ALEN-Ca forms I and II, ALEN-Zn forms I and II, and ALEN-Mg) and their solid-state properties revealed in tandem with other techniques.

View Article and Find Full Text PDF

A very promising direction in the development of anticancer drugs is inhibiting the molecular pathways that keep cancer cells alive and able to metastasize. Copper and iron are two essential metals that play significant roles in the rapid proliferation of cancer cells and several chelators have been studied to suppress the bioavailability of these metals in the cells. This review discusses the major contributions that Cu and Fe play in the progression and spreading of cancer and evaluates select Cu and Fe chelators that demonstrate great promise as anticancer drugs.

View Article and Find Full Text PDF