This work elucidates the effect of interface orientation, loading mode, and crystallography on the deformation mechanisms of Cu-Nb-multilayered nanocomposites. Molecular dynamics simulations of deformation behavior of accumulative roll-bonded Cu-Nb-multilayered nanocomposites (MNCs) were performed at room temperature conditions and at a constant strain rate under iso-stress and iso-strain conditions. Interface deformation mechanisms involving nucleation of partial dislocation at the interface and gliding in the Cu layer were observed under iso-stress and iso-strain conditions.
View Article and Find Full Text PDFThe demand for hydrogen is increasing due to commercialization of fuel cells. Palladium (Pd)-based crystalline membranes have been used for separation of hydrogen from a mixture of gases in coal-based power generation process. However, very high cost of Pd has prompted to explore inexpensive alternative alloys.
View Article and Find Full Text PDF