Am J Physiol Cell Physiol
November 2024
Turtle hepatocytes are a non-excitable model for metabolic depression during low-temperature and/or anoxic overwintering conditions. Cytoskeletal structure and mitochondrial distribution are continuously modified in cells, and we hypothesized that metabolic depression would inhibit such processes as cell attachment and spreading and promote withdrawal of cell protrusions and peripheral mitochondria. After developing a methodology for culturing painted turtle hepatocytes, maintenance of cell attachment after a media change, and 2D area, were used as indicators of structural rearrangement and spreading/volume.
View Article and Find Full Text PDFAnoxia in the mammalian brain leads to hyper-excitability and cell death; however, this cascade of events does not occur in the anoxia-tolerant brain of the western painted turtle, Chrysemys picta belli. The painted turtle has become an important anoxia-tolerant model to study brain, heart, and liver function in the absence of oxygen, but being anoxia-tolerant likely means that decapitation alone is not a suitable method of euthanasia. Many anesthetics have long-term effects on ion channels and are not appropriate for same day experimentation.
View Article and Find Full Text PDFHypoxia is a significant source of metabolic stress that activates many cellular pathways involved in cellular differentiation, proliferation, and cell death. Hypoxia is also a major component in many human diseases and a known driver of many cancers. Despite the challenges posed by hypoxia, there are animals that display impressive capacity to withstand lethal levels of hypoxia for prolonged periods of time and thus offer a gateway to a more comprehensive understanding of the hypoxic response in vertebrates.
View Article and Find Full Text PDFSkeletal muscle regulation is responsible for voluntary muscular movement in vertebrates. The genes of two essential proteins, teneurins and latrophilins (LPHN), evolving in ancestors of multicellular animals form a ligand-receptor pair, and are now shown to be required for skeletal muscle function. Teneurins possess a bioactive peptide, termed the teneurin C-terminal associated peptide (TCAP) that interacts with the LPHNs to regulate skeletal muscle contractility strength and fatigue by an insulin-independent glucose importation mechanism in rats.
View Article and Find Full Text PDFComp Biochem Physiol B Biochem Mol Biol
April 2022
Symbiosis is found throughout nature, but perhaps nowhere is it more fundamental than mitochondria in all eukaryotes. Since mitochondria were discovered and mechanisms of oxygen reduction characterized, an understanding gradually emerged that these organelles were involved not just in the combustion of oxygen, but also in the sensing of oxygen. While multiple hypotheses exist to explain the mitochondrial involvement in oxygen sensing, key elements are developing that include potassium channels and reactive oxygen species.
View Article and Find Full Text PDFIn most vertebrates, anoxia drastically reduces the production of the essential adenosine triphosphate (ATP) to power its many necessary functions, and, consequently, cell death occurs within minutes. However, some vertebrates, such as the painted turtle (Chrysemys picta bellii), have evolved the ability to survive months without oxygen by simultaneously decreasing ATP supply and demand, surviving the anoxic period without any apparent cellular damage. The impact of anoxia on the metabolic function of painted turtles has received a lot of attention.
View Article and Find Full Text PDFMammalian neurons undergo rapid excitotoxic cell death when deprived of oxygen; however, the common goldfish () has the unique ability of surviving in oxygen-free waters, under anoxia. This organism utilizes γ-amino butyric acid (GABA) signaling to suppress excitatory glutamatergic activity during anoxic periods. Although GABA receptor antagonists are not deleterious to the cellular survival, coinhibition of GABA and GABA receptors is detrimental by abolishing anoxia-induced neuroprotective mechanisms.
View Article and Find Full Text PDFThe western painted turtle () has the unique ability of surviving several months in the absence of oxygen, which is termed anoxia. One major protective strategy that the turtle employs during anoxia is a reduction in neuronal electrical activity, which may result from a natural reduction in reactive oxygen species (ROS). We previously linked a reduction in ROS levels to an increase in γ-amino butyric acid (GABA) receptor currents.
View Article and Find Full Text PDFThe western painted turtle () can survive extended periods of anoxia via a series of mechanisms that serve to reduce its energetic needs. Central to these mechanisms is the response of mitochondria, which depolarize in response to anoxia in turtle pyramidal neurons due to an influx of K. It is currently unknown how mitochondrial matrix pH is affected by this response and we hypothesized that matrix pH acidifies during anoxia due to increased K/H exchanger activity.
View Article and Find Full Text PDFUnlike anoxia-intolerant mammals, painted turtles can survive extended periods without oxygen. This is partly accomplished by an anoxia-mediated increase in gamma-aminobutyric acid (GABA) release, which activates GABA receptors and mediates spike arrest in turtle neurons via shunting inhibition. Extracellular taurine levels also increase during anoxia; why this occurs is unknown but it is speculated that glycine and/or GABA receptors are involved.
View Article and Find Full Text PDFComp Biochem Physiol B Biochem Mol Biol
October 2018
The ion channel arrest hypothesis has been the foundation of three decades of research into the underlying mechanisms of hypoxia/anoxia tolerance in several key species, including: painted turtles, goldfish, crucian carp, naked mole rats, and arctic and ground squirrels. The hypothesis originally stated that hypoxia/anoxia tolerant species ought to have fewer ion channels per area membrane and/or mechanisms to regulate the conductance of ion channels. Today we can add to this and include mechanisms to remove channels from membranes and the expression of low conductance isoforms.
View Article and Find Full Text PDFWith oxygen deprivation, the mammalian brain undergoes hyper-activity and neuronal death while this does not occur in the anoxia-tolerant goldfish (). Anoxic survival of the goldfish may rely on neuromodulatory mechanisms to suppress neuronal hyper-excitability. As γ-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the brain, we decided to investigate its potential role in suppressing the electrical activity of goldfish telencephalic neurons.
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
January 2017
The pond snail Lymnaea stagnalis is reported to be anoxia-tolerant and if the tolerance mechanism is similar to that of the anoxia-tolerant painted turtle, GABA should play an important role. A potentially confounding factor investigating the role of GABA in anoxia tolerance are reports that GABA has both inhibitory and excitatory effects within L. stagnalis central ganglion.
View Article and Find Full Text PDFComp Biochem Physiol B Biochem Mol Biol
October 2016
Neurons from the western painted turtle (Chrysemys picta bellii) are remarkably resilient to anoxia. This is partly due to a reduction in the permeability of excitatory glutamatergic ion channels, initiated by mitochondrial ATP-sensitive K(+) (mK(+)ATP) channel activation. The aim of this study was to determine if: 1) PKCε, a kinase associated with hypoxic stress tolerance, is more highly expressed in turtle brain than the anoxia-intolerant rat brain; 2) PKCε translocates to the mitochondrial membrane during anoxia; 3) PKCε modulates mK(+)ATP channels at the Thr-224 phosphorylation site on the Kir6.
View Article and Find Full Text PDFPainted turtles are the most anoxia-tolerant tetrapods known, capable of surviving without oxygen for more than four months at 3°C and 30 hours at 20°C. To investigate the transcriptomic basis of this ability, we used RNA-seq to quantify mRNA expression in the painted turtle ventricle and telencephalon after 24 hours of anoxia at 19°C. Reads were obtained from 22,174 different genes, 13,236 of which were compared statistically between treatments for each tissue.
View Article and Find Full Text PDFSurviving hypoxia is one of the most critical challenges faced by vertebrates. Most species have adapted to changing levels of oxygen in their environment with specialized organs that sense hypoxia, while only few have been uniquely adapted to survive prolonged periods of anoxia. The goal of this review is to present the most recent research on oxygen sensing, adaptation to hypoxia, and mechanisms of anoxia tolerance in nonmammalian vertebrates.
View Article and Find Full Text PDFAnoxia induces hyper-excitability and cell death in mammalian brain but in the anoxia-tolerant western painted turtle (Chrysemys picta bellii) neuronal electrical activity is suppressed (i.e. spike arrest), adenosine triphosphate (ATP) consumption is reduced, and cell death does not occur.
View Article and Find Full Text PDFDuring anoxia, overall protein synthesis is almost undetectable in the brain of the western painted turtle. The aim of this investigation was to address the question of whether there are alterations to specific proteins by comparing the normoxic and anoxic brain proteomes. Reductions in creatine kinase, hexokinase, glyceraldehyde-3-phosphate dehydrogenase, and pyruvate kinase reflected the reduced production of adenosine triphosphate (ATP) during anoxia while the reduction in transitional endoplasmic reticulum ATPase reflected the conservation of ATP or possibly a decrease in intracellular Ca(2+).
View Article and Find Full Text PDFOxygen deprivation triggers excitotoxic cell death in mammal neurons through excessive calcium loading via over-activation of N-methyl-d-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. This does not occur in the western painted turtle, which overwinters for months without oxygen. Neurological damage is avoided through anoxia-mediated decreases in NMDA and AMPA receptor currents that are dependent upon a modest rise in intracellular Ca(2+) concentrations ([Ca(2+)]i) originating from mitochondria.
View Article and Find Full Text PDFMammalian neurons are anoxia sensitive and rapidly undergo excitotoxic cell death when deprived of oxygen, mediated largely by Ca(2+) entry through over-activation of N-methyl-d-aspartate receptors (NMDARs). This does not occur in neurons of the anoxia-tolerant western painted turtle, where a decrease in NMDAR currents is observed with anoxia. This decrease is dependent on a modest rise in cytosolic [Ca(2+)] ([Ca(2+)]c) that is mediated by release from the mitochondria.
View Article and Find Full Text PDFBackground: We describe the genome of the western painted turtle, Chrysemys picta bellii, one of the most widespread, abundant, and well-studied turtles. We place the genome into a comparative evolutionary context, and focus on genomic features associated with tooth loss, immune function, longevity, sex differentiation and determination, and the species' physiological capacities to withstand extreme anoxia and tissue freezing.
Results: Our phylogenetic analyses confirm that turtles are the sister group to living archosaurs, and demonstrate an extraordinarily slow rate of sequence evolution in the painted turtle.
Anoxia rapidly elicits hyper-excitability and cell death in mammal brain but this is not so in anoxia-tolerant turtle brain where spontaneous electrical activity is suppressed by anoxia (i.e. spike arrest; SA).
View Article and Find Full Text PDFAnoxia or ischemia causes hyperexcitability and cell death in mammalian neurons. Conversely, in painted turtle brain anoxia increases γ-amino butyric acid (GABA)ergic suppression of spontaneous electrical activity, and cell death is prevented. To examine ischemia tolerance in turtle neurons, we treated cortical sheets with an in vitro mimic of the penumbral region of stroke-afflicted mammalian brain (ischemic solution, IS).
View Article and Find Full Text PDFAcute ammonia toxicity in vertebrates is thought to be characterized by a cascade of deleterious events resembling those associated with anoxic/ischemic injury in the central nervous system. A key event is the over-stimulation of neuronal N-methyl-D-aspartate (NMDA) receptors, which leads to excitotoxic cell death. The similarity between the responses to acute ammonia toxicity and anoxia suggests that anoxia-tolerant animals such as the goldfish (Carassius auratus Linnaeus) may also be ammonia tolerant.
View Article and Find Full Text PDFAnoxic insults cause hyperexcitability and cell death in mammalian neurons. Conversely, in anoxia-tolerant turtle brain, spontaneous electrical activity is suppressed by anoxia (i.e.
View Article and Find Full Text PDF