Understanding how neural circuits work requires a detailed knowledge of cellular-level connectivity. Our current understanding of neural circuitry is limited by the constraints of existing tools for transsynaptic tracing. Some of the most intractable problems are a lack of cellular specificity of uptake, transport across multiple synaptic steps conflating direct and indirect inputs, and poor labeling of minor inputs.
View Article and Find Full Text PDFThe ability of glucocorticoids (GCs) to regulate cell proliferation plays an important role in their therapeutic use. The canonical Wnt pathway, which promotes the proliferation of many cancers and differentiated tissues, is an emerging target for the actions of GCs, albeit existing links between these signaling pathways are indirect. By screening known Wnt target genes for their ability to respond differently to GCs in cells whose proliferation is either positively or negatively regulated by GCs, we identified c-myc, c-jun, and cyclin D1, which encode rate-limiting factors for G(1) progression of the cell cycle.
View Article and Find Full Text PDF