Expansion of a poly-glutamine (polyQ) repeat in a group of functionally unrelated proteins is the cause of several inherited neurodegenerative disorders, including Huntington's disease. The polyQ length-dependent aggregation and toxicity of these disease proteins can be reproduced in Saccharomyces cerevisiae. This system allowed us to screen for genes that when overexpressed reduce the toxic effects of an N-terminal fragment of mutant huntingtin with 103 Q.
View Article and Find Full Text PDFThe [URE3] yeast prion is a self-propagating inactive form of the Ure2 protein. Ure2p is composed of two domains, residues 1-93, the prion-forming domain, and the remaining C-terminal part of the protein, which forms the functional domain involved in nitrogen catabolite repression. In vitro, Ure2p forms amyloid filaments that have been proposed to be the aggregated prion form found in vivo.
View Article and Find Full Text PDFThe yeast prion [URE3] is a self-propagating inactive form (the propagon) of the Ure2 protein. Ure2p is composed of two domains: residues 1-93--the prion-forming domain (PFD)--and the remaining C-terminal part of the protein, which forms the functional domain involved in nitrogen catabolite repression. Guanidine hydrochloride, and the overproduction of Ure2p 1-65 or Ure2-GFP have been shown to induce the elimination of [URE3].
View Article and Find Full Text PDFThe aggregation of the two yeast proteins Sup35p and Ure2p is widely accepted as a model for explaining the prion propagation of the phenotypes [PSI+] and [URE3], respectively. Here, we demonstrate that the propagation of [URE3] cannot simply be the consequence of generating large aggregates of Ure2p, because such aggregation can be found in some conditions that are not related to the prion state of Ure2p. A comparison of [PSI+] and [URE3] aggregation demonstrates differences between these two prion mechanisms.
View Article and Find Full Text PDF