Publications by authors named "Leslie Prichep"

Importance: The identification of brain activity-based concussion subtypes at time of injury has the potential to advance the understanding of concussion pathophysiology and to optimize treatment planning and outcomes.

Objective: To investigate the presence of intrinsic brain activity-based concussion subtypes, defined as distinct resting state quantitative electroencephalography (qEEG) profiles, at the time of injury.

Design, Setting, And Participants: In this retrospective, multicenter (9 US universities and high schools and 4 US clinical sites) cohort study, participants aged 13 to 70 years with mild head injuries were included in longitudinal cohort studies from 2017 to 2022.

View Article and Find Full Text PDF

Exposure to repetitive head impacts (RHI) has been associated with long-term disturbances in cognition, mood, and neurobehavioral dysregulation, and reflected in neuroimaging. Distinct patterns of changes in quantitative features of the brain electrical activity (quantitative electroencephalogram [qEEG]) have been demonstrated to be sensitive to brain changes seen in neurodegenerative disorders and in traumatic brain injuries (TBI). While these qEEG biomarkers are highly sensitive at time of injury, the long-term effects of exposure to RHI on brain electrical activity are relatively unexplored.

View Article and Find Full Text PDF

This paper extends frequency domain quantitative electroencephalography (qEEG) methods pursuing higher sensitivity to detect Brain Developmental Disorders. Prior qEEG work lacked integration of cross-spectral information omitting important functional connectivity descriptors. Lack of geographical diversity precluded accounting for site-specific variance, increasing qEEG nuisance variance.

View Article and Find Full Text PDF

Protein Energy Malnutrition (PEM) has lifelong consequences on brain development and cognitive function. We studied the lifelong developmental trajectories of resting-state EEG source activity in 66 individuals with histories of Protein Energy Malnutrition (PEM) limited to the first year of life and in 83 matched classmate controls (CON) who are all participants of the 49 years longitudinal Barbados Nutrition Study (BNS). qEEGt source z-spectra measured deviation from normative values of EEG rhythmic activity sources at 5-11 years of age and 40 years later at 45-51 years of age.

View Article and Find Full Text PDF

The COVID-19 pandemic has accelerated neurological, mental health disorders, and neurocognitive issues. However, there is a lack of inexpensive and efficient brain evaluation and screening systems. As a result, a considerable fraction of patients with neurocognitive or psychobehavioral predicaments either do not get timely diagnosed or fail to receive personalized treatment plans.

View Article and Find Full Text PDF

Background: Prompt, accurate, objective assessment of concussion is crucial, particularly for children/adolescents and young adults. While there is currently no gold standard for the diagnosis of concussion, the importance of multidimensional/multimodal assessments has recently been emphasized.

Methods: Concussed subjects (N = 177), matched controls (N = 187) and healthy volunteers (N = 204) represented a convenience sample of male and female subjects between the ages of 13 and 25 years, enrolled at 29 Colleges and 19 High Schools in the US.

View Article and Find Full Text PDF

The goal of this study is to identify the quantitative electroencephalographic (qEEG) signature of early childhood malnutrition [protein-energy malnutrition (PEM)]. To this end, archival digital EEG recordings of 108 participants in the Barbados Nutrition Study (BNS) were recovered and cleaned of artifacts (46 children who suffered an episode of PEM limited to the first year of life) and 62 healthy controls). The participants of the still ongoing BNS were initially enrolled in 1973, and EEGs for both groups were recorded in 1977-1978 (at 5-11 years).

View Article and Find Full Text PDF

Chronic pain affects more than 35% of the US adult population representing a major public health imperative. Currently, there are no objective means for identifying the presence of pain, nor for quantifying pain severity. Through a better understanding of the pathophysiology of pain, objective indicators of pain might be forthcoming.

View Article and Find Full Text PDF

The potential clinical utility of a novel quantitative electroencephalographic (EEG)-based Brain Function Index (BFI) as a measure of the presence and severity of functional brain injury was studied as part of an independent prospective validation trial. The BFI was derived using quantitative EEG (QEEG) features associated with functional brain impairment reflecting current consensus on the physiology of concussive injury. Seven hundred and twenty adult patients (18-85 years of age) evaluated within 72 h of sustaining a closed head injury were enrolled at 11 U.

View Article and Find Full Text PDF

Objective: To evaluate the effectiveness of the electroencephalographic (EEG) Brain Function Index (BFI) for characterizing sports-related concussive injury and recovery.

Participants: Three hundred fifty-four (354) male contact sport high school and college athletes were prospectively recruited from multiple locations over 6 academic years of play (244 control baseline athletes and 110 athletes with a concussion).

Methods: Using 5 to 10 minutes of eyes closed resting EEG collected from frontal and frontotemporal regions, a BFI was computed for all subjects and sessions.

View Article and Find Full Text PDF

Background: Extremely high accuracy for predicting CT+ traumatic brain injury (TBI) using a quantitative EEG (QEEG) based multivariate classification algorithm was demonstrated in an independent validation trial, in Emergency Department (ED) patients, using an easy to use handheld device. This study compares the predictive power using that algorithm (which includes LOC and amnesia), to the predictive power of LOC alone or LOC plus traumatic amnesia.

Participants: ED patients 18-85years presenting within 72h of closed head injury, with GSC 12-15, were study candidates.

View Article and Find Full Text PDF

Objectives: A brain electrical activity biomarker for identifying traumatic brain injury (TBI) in emergency department (ED) patients presenting with high Glasgow Coma Scale (GCS) after sustaining a head injury has shown promise for objective, rapid triage. The main objective of this study was to prospectively evaluate the efficacy of an automated classification algorithm to determine the likelihood of being computed tomography (CT) positive, in high-functioning TBI patients in the acute state.

Methods: Adult patients admitted to the ED for evaluation within 72 hours of sustaining a closed head injury with GCS 12 to 15 were candidates for study.

View Article and Find Full Text PDF

Objective: The aim of our study is to examine quantitative Electroencephalogram (QEEG) differences between ADHD patients that are responders and non-responders to long-term treatment with Atomoxetine at baseline and after 6 and 12months of treatment. Patients with attention deficit hyperactivity disorder (ADHD) received atomoxetine titrated, over 7days, from 0.5 to 1.

View Article and Find Full Text PDF

Study Objective: We compared the performance of a handheld quantitative electroencephalogram (QEEG) acquisition device to New Orleans Criteria (NOC), Canadian CT Head Rule (CCHR), and National Emergency X-Radiography Utilization Study II (NEXUS II) Rule in predicting intracranial lesions on head computed tomography (CT) in acute mild traumatic brain injury in the emergency department (ED).

Methods: Patients between 18 and 80 years of age who presented to the ED with acute blunt head trauma were enrolled in this prospective observational study at 2 urban academic EDs in Detroit, MI. Data were collected for 10 minutes from frontal leads to determine a QEEG discriminant score that could maximally classify intracranial lesions on head CT.

View Article and Find Full Text PDF

Objectives: Acute stroke is a leading cause of brain injury and death and requires rapid and accurate diagnosis. Noncontrast head computed tomography (CT) is the first line for diagnosis in the emergency department (ED). Complicating rapid triage are presenting conditions that clinically mimic stroke.

View Article and Find Full Text PDF

Background: There is an urgent need for objective criteria adjunctive to standard clinical assessment of acute Traumatic Brain Injury (TBI). Details of the development of a quantitative index to identify structural brain injury based on brain electrical activity will be described.

Methods: Acute closed head injured and normal patients (n=1470) were recruited from 16 US Emergency Departments and evaluated using brain electrical activity (EEG) recorded from forehead electrodes.

View Article and Find Full Text PDF

Rapid identification of traumatic intracranial hematomas following closed head injury represents a significant health care need because of the potentially life-threatening risk they present. This study demonstrates the clinical utility of an index of brain electrical activity used to identify intracranial hematomas in traumatic brain injury (TBI) presenting to the emergency department (ED). Brain electrical activity was recorded from a limited montage located on the forehead of 394 closed head injured patients who were referred for CT scans as part of their standard ED assessment.

View Article and Find Full Text PDF

This study investigates the potential clinical utility in the emergency department (ED) of an index of brain electrical activity to identify intracranial hematomas. The relationship between this index and depth, size, and type of hematoma was explored. Ten minutes of brain electrical activity was recorded from a limited montage in 38 adult patients with traumatic hematomas (CT scan positive) and 38 mild head injured controls (CT scan negative) in the ED.

View Article and Find Full Text PDF

Fourteen subjects with histories of sexual and/or physical abuse in childhood and 13 matched control subjects were selected from a consecutive series of clients in residential treatment for crack cocaine dependence. Standardized low-resolution electromagnetic brain tomography (sLORETA) was used to estimate the source generators of the EEG in a cortical mask with voxel z-scores referenced to normative data at frequency intervals of 039 Hz, with nonparametric permutation to correct by randomization for the number of comparisons and the intercorrelations and variance of distribution of voxel values. Subjects with histories of abuse in childhood had significantly greater EEG power than controls in the theta frequency range (3.

View Article and Find Full Text PDF

Introduction: The incidence of emergency department (ED) visits for Traumatic Brain Injury (TBI) in the United States exceeds 1,000,000 cases/year with the vast majority classified as mild (mTBI). Using existing computed tomography (CT) decision rules for selecting patients to be referred for CT, such as the New Orleans Criteria (NOC), approximately 70% of those scanned are found to have a negative CT. This study investigates the use of quantified brain electrical activity to assess its possible role in the initial screening of ED mTBI patients as compared to NOC.

View Article and Find Full Text PDF

The International Pharmaco-EEG Society (IPEG) presents updated guidelines summarising the requirements for the recording and computerised evaluation of pharmaco-EEG data in man. Since the publication of the first pharmaco-EEG guidelines in 1982, technical and data processing methods have advanced steadily, thus enhancing data quality and expanding the palette of tools available to investigate the action of drugs on the central nervous system (CNS), determine the pharmacokinetic and pharmacodynamic properties of novel therapeutics and evaluate the CNS penetration or toxicity of compounds. However, a review of the literature reveals inconsistent operating procedures from one study to another.

View Article and Find Full Text PDF

Assessment of medical disorders is often aided by objective diagnostic tests which can lead to early intervention and appropriate treatment. In the case of brain dysfunction caused by head injury, there is an urgent need for quantitative evaluation methods to aid in acute triage of those subjects who have sustained traumatic brain injury (TBI). Current clinical tools to detect mild TBI (mTBI/concussion) are limited to subjective reports of symptoms and short neurocognitive batteries, offering little objective evidence for clinical decisions; or computed tomography (CT) scans, with radiation-risk, that are most often negative in mTBI.

View Article and Find Full Text PDF

Background And Purpose: Recent neuroimaging studies suggest that abnormalities in brain function after concussion exist beyond the point of observed clinical recovery. This study investigated the relationship between an index of brain dysfunction (traumatic brain injury [TBI] Index), concussion severity, and outcome.

Methods: EEG was collected from forehead locations in 65 male athletes with concussion within 24 hours of concussion, with follow-up at 8 and 45 days postinjury.

View Article and Find Full Text PDF