Publications by authors named "Leslie Olmedo Nieva"

Persistent high-risk human papillomavirus infection is the main risk factor for cervical cancer establishment, where the viral oncogenes E6 and E7 promote a cancerous phenotype. Metabolic reprogramming in cancer involves alterations in glutamine metabolism, also named glutaminolysis, to provide energy for supporting cancer processes including migration, proliferation, and production of reactive oxygen species, among others. The aim of this work was to analyze the effect of HPV16 E6 and E7 oncoproteins on the regulation of glutaminolysis and its contribution to cell proliferation.

View Article and Find Full Text PDF

Background: Worldwide prevalence of Oropharyngeal Squamous Cell Carcinoma (OPSCC) has increased, affecting mostly young males. OPSCC associated with Human Papillomavirus (HPV) infection exhibits particular characteristics in terms of response to treatment, hence HPV has been proposed as a prognostic factor. The impact of HPV positivity and associated biomarkers on OPSCC in the Mexican population has not been addressed.

View Article and Find Full Text PDF

High-risk human papillomavirus (HPV) infection is the main risk factor for cervical cancer (CC) development, where the continuous expression of E6 and E7 oncoproteins maintain the malignant phenotype. In Mexico, around 70% of CC cases are diagnosed in advanced stages, impacting the survival of patients. The aim of this work was to identify biomarkers affected by HPV-16 E6 and E7 oncoproteins that impact the prognosis of CC patients.

View Article and Find Full Text PDF
Article Synopsis
  • Persistent infection with high-risk HPV is linked to various cancers due to the ongoing activity of E6 and E7 oncoproteins, which affect important cell signaling pathways like the Hippo pathway.
  • E6 proteins increase the levels of Hippo components (YAP, TAZ, TEAD) and promote their nuclear localization, while decreasing their negative regulators, which may facilitate HPV infection and cancer development.
  • The review emphasizes the need for further research to uncover the specific mechanisms of the HPV-Hippo signaling interaction, potentially leading to new therapeutic targets for HPV-related cancers.
View Article and Find Full Text PDF

Cancer cells exhibit exacerbated metabolic activity to maintain their accelerated proliferation and microenvironmental adaptation in order to survive under nutrient-deficient conditions. Tumors display an increase in glycolysis, glutaminolysis and fatty acid biosynthesis, which provide their energy source. Glutamine is critical for fundamental cellular processes, where intermediate metabolites produced through glutaminolysis are necessary for the maintenance of mitochondrial metabolism.

View Article and Find Full Text PDF
Article Synopsis
  • Solid tumors create new blood vessels through angiogenesis (from existing vessels) and vasculogenesis (from progenitor cells), leading to disorganized networks that support their growth and spread.
  • Tumor cells can also form vessel-like structures via vasculogenic mimicry (VM), especially in aggressive types like ovarian carcinoma, which is notably deadly in gynecological cancers.
  • VM contributes to poor patient outcomes and is influenced by various signaling molecules, presenting potential targets for improving ovarian cancer treatments as the mechanisms behind VM are still being studied.
View Article and Find Full Text PDF

The Human Papillomavirus (HPV) E1 protein is the only viral protein with enzymatic activity. The main known function of this protein is the regulation of the viral DNA replication. Nevertheless, it has been demonstrated that the ablation of HPV18 E1 mRNA in HeLa cells promotes a deregulation of several genes, particularly those involved in host defense mechanisms against viral infections; however, the specific contribution of E1 protein in HPV-independent context has not been studied.

View Article and Find Full Text PDF

The Wnt/β-catenin signaling pathway regulates cell proliferation and differentiation and its aberrant activation in cervical cancer has been described. Persistent infection with high risk human papillomavirus (HR-HPV) is the most important factor for the development of this neoplasia, since E6 and E7 viral oncoproteins alter cellular processes, promoting cervical cancer development. A role of HPV-16 E6 in Wnt/β-catenin signaling has been proposed, although the participation of HPV-18 E6 has not been previously studied.

View Article and Find Full Text PDF

The Notch pathway is a conserved signaling pathway and a form of direct cell-cell communication related to many biological processes during development and adulthood. Deregulation of the Notch pathway is involved in many diseases, including cancer. Almost 20% of all cancer cases have an infectious etiology, with viruses responsible for at least 1.

View Article and Find Full Text PDF

Persistent infections with High Risk Human Papillomaviruses (HR-HPVs) are the main cause of cervical cancer development. The E6 and E7 oncoproteins of HR-HPVs are derived from a polycistronic pre-mRNA transcribed from an HPV early promoter. Through alternative splicing, this pre-mRNA produces a variety of E6 spliced transcripts termed E6*.

View Article and Find Full Text PDF

Cell signaling pathways are the mechanisms by which cells transduce external stimuli, which control the transcription of genes, to regulate diverse biological effects. In cancer, distinct signaling pathways, such as the Wnt/β-catenin pathway, have been implicated in the deregulation of critical molecular processes that affect cell proliferation and differentiation. For example, changes in β-catenin localization have been identified in Human Papillomavirus (HPV)-related cancers as the lesion progresses.

View Article and Find Full Text PDF