Publications by authors named "Leslie Ogorzaly"

Wastewater-based surveillance (WBS) has become a widespread method to monitor transmission of SARS-CoV-2 and other human pathogens in Europe. We conducted a survey about WBS systems' objectives, approaches, representativeness and usefulness in 10 invited European countries in 2023, i.e.

View Article and Find Full Text PDF

Despite the ubiquity of viruses in soils, their diversity in soil water has not been explored, mainly due to the difficulty of collecting them. In hydrology, soil water is usually collected using porous candles. This study proposes using these porous candles as a new tool for sampling viruses in soil water to analyze their passage through the ceramic part of the candles.

View Article and Find Full Text PDF

Understanding the persistence of SARS-CoV-2 biomarkers in wastewater should guide wastewater-based epidemiology users in selecting best RNA biomarkers for reliable detection of the virus during current and future waves of the pandemic. In the present study, the persistence of endogenous SARS-CoV-2 were assessed during one month for six different RNA biomarkers and for the pepper mild mottle virus (PMMoV) at three different temperatures (4, 12 and 20 °C) in one wastewater sample. All SARS-CoV-2 RNA biomarkers were consistently detected during 6 days at 4° and differences in signal persistence among RNA biomarkers were mostly observed at 20 °C with N biomarkers being globally more persistent than RdRP, E and ORF1ab ones.

View Article and Find Full Text PDF

Bacteriophages participate in soil life by influencing bacterial community structure and function, biogeochemical cycling and horizontal gene transfer. Despite their great abundance, diversity, and importance in microbial processes, they remain little explored in environmental studies. The influence of abiotic factors on the persistence of bacteriophages is now recognized; however, it has been mainly studied under experimental conditions.

View Article and Find Full Text PDF

Continuous surveillance of COVID-19 diffusion remains crucial to control its diffusion and to anticipate infection waves. Detecting viral RNA load in wastewater samples has been suggested as an effective approach for epidemic monitoring and the development of an effective warning system. However, its quantitative link to the epidemic status and the stages of outbreak is still elusive.

View Article and Find Full Text PDF

The presence of SARS-CoV-2 RNA in wastewater was first reported in March 2020. Over the subsequent months, the potential for wastewater surveillance to contribute to COVID-19 mitigation programmes has been the focus of intense national and international research activities, gaining the attention of policy makers and the public. As a new application of an established methodology, focused collaboration between public health practitioners and wastewater researchers is essential to developing a common understanding on how, when and where the outputs of this non-invasive community-level approach can deliver actionable outcomes for public health authorities.

View Article and Find Full Text PDF

Riverbed sediment is commonly described as an enteric virus reservoir and thought to play an important role in water column contamination, especially during rainfall events. Although the occurrence and fate of faecal-derived viruses are fairly well characterized in water, little information is available on their presence as their interactions with sediment. This study aimed at determining the main environmental factors responsible for the presence of enteric viruses in riverbed sediment.

View Article and Find Full Text PDF

Lack of wastewater treatment efficiency causes receiving seawaters and bivalve molluscan shellfish to become contaminated, which can lead to public health issues. Six wastewater samples, five seawater samples and three batches of giant clams from Tahiti (French Polynesia) were investigated for the presence of enteric viruses, but also if present, for the diversity, infectivity and integrity of human adenoviruses (HAdV). Enteroviruses (EV), sapoviruses (SaV) and human polyomaviruses (HPyV) were detected in all wastewater samples.

View Article and Find Full Text PDF

The occurrence and propagation of enteric viruses in rivers constitute a major public health issue. However, little information is available on the in situ transport and spread of viruses in surface water. In this study, an original in situ experimental approach using the residence time of the river water mass was developed to accurately follow the propagation of F-specific RNA bacteriophages (FRNAPHs) along a 3-km studied river.

View Article and Find Full Text PDF

The association of viruses with settling particles is certainly a major process controlling the spread of viral pollution in surface water and sediment. To better understand the viral distribution in a river system, the behavior of F-specific RNA bacteriophages (FRNAPHs) was investigated in relationship with the suspended solids and sediment. The partitioning of phage particles (free or associated with solids) in surface water and the attachment capabilities of eight distinct strains of phages to sediment were studied in lab experiments.

View Article and Find Full Text PDF

Heavy rainfall events were previously reported to bring large amounts of microorganisms in surface water, including viruses. However, little information is available on the origin and transport of viral particles in water during such rain events. In this study, an integrative approach combining microbiological and hydrological measurements was investigated to appreciate the dynamics and origins of F-specific RNA bacteriophage fluxes during two distinct rainfall-runoff events.

View Article and Find Full Text PDF

Background: The occurrence of faecal pathogens in drinking water resources constitutes a threat to the supply of safe drinking water, even in industrialized nations. To efficiently assess and monitor the risk posed by these pathogens, sampling deserves careful design, based on preliminary knowledge on their distribution dynamics in water. For the protozoan pathogens Cryptosporidium and Giardia, only little is known about their spatial distribution within drinking water supplies, especially at fine scale.

View Article and Find Full Text PDF

This study aims to establish a straightforward and original workflow for high-throughput typing of human adenoviruses (HAdVs) in environmental samples. Occurrence of HAdVs in water is well documented worldwide, but data on diversity of HAdV types circulating in water are scarcely available. Here, the characterisation of viral particles was performed by determination of amplicon sequences using a next-generation sequencing (NGS) approach.

View Article and Find Full Text PDF

Because of their significant public health impact, waterborne Cryptosporidium and Giardia have been monitored in surface water in order to assess microbial quality of water bodies used for drinking water production and/or for recreational purposes. In this context, sampling strategy is of key importance and should be representative enough to appropriately assess the related microbial risk. This, however, requires sound knowledge on the behaviour of both pathogens in water.

View Article and Find Full Text PDF

Development of rapid, sensitive and specific methods for detection of infectious enteric viruses in water is challenging but crucial for gaining reliable information for risk assessment. An immunocapture real-time PCR (IC-qPCR) was designed to detect jointly the two major viral particle components, i.e.

View Article and Find Full Text PDF

In order to provide a more suitable response to public health concerns, we improved the detection of infectious human adenoviruses in water by optimising the commonly used integrated cell culture-PCR method. Risk evaluation studies seek for rapid detection of infectious adenoviruses, including the enteric types 40 and 41 that are considered as the second most common agents of gastroenteritis in children next to rotaviruses. The here-employed 293A cell line used for infectious status assessment showed its ability to multiply adenoviruses including type 41.

View Article and Find Full Text PDF

Detection of specific genetic markers can rapidly identify the presence of enteric viruses in groundwater. However, comparison of stability characteristics between genetic and infectivity markers is necessary to better interpret molecular data. Human adenovirus serotype 2 (HAdV2), in conjunction with MS2 phages or GA phages, was spiked into raw groundwater microcosms.

View Article and Find Full Text PDF

Enteroviruses and noroviruses are pathogenic viruses excreted by infected individuals. Discharged in wastewaters, some of these viruses can be captured by biofilms. In the present study, we assessed the occurrence and persistence of these viruses in wastewaters and in corresponding biofilms.

View Article and Find Full Text PDF

Recent studies have shown the increasing interest of F-specific RNA phage genotyping to identify major sources of faecal contamination in waters. This study, conducted in a river located in an urbanized watershed with recognized anthropogenic influences, was aimed at evaluating the relevance of direct phage genotyping by real-time RT-PCR. One hundred percent of positive results were obtained with a 5 mL aliquot of river water (n=31).

View Article and Find Full Text PDF

F-specific RNA bacteriophages have been classified into four genogroups (GI, GII, GIII and GIV). It was suggested that two of these genogroups are more frequent in human excreta (GII and GIII) and the two other (GI and GIV) are specific for animal excreta. Real-time RT-PCR methods using TaqMan MGB probe were developed to detect the four genogroups.

View Article and Find Full Text PDF