[Purpose] The usefulness and limitations of outcome measures changes throughout functional decline of patients with Amyotrophic Lateral Sclerosis (ALS). This study aims to describe associations between outcome measures in patients with ALS over time. [Participants and Methods] Participant data was collected at a multidisciplinary ALS clinic during regular clinic visits, including gait velocity, Timed Up and Go, the ALS Functional Rating Scale-Revised, and it's Gross Motor Subscale.
View Article and Find Full Text PDFInt J Environ Res Public Health
October 2021
Purpose: To evaluate the effects of a short-term intensive virtual reality intervention in adolescents with cerebral palsy (CP).
Methods: Single-subject design, type A-B-follow-up, with four participants (P) with CP, 15-18 years, GMFCS level II. A two-week intervention phase was performed with twelve Nintendo Wii games in six sessions (90 min) per week.
Now that examples of multisensory neurons have been observed across the neocortex, this has led to some confusion about the features that actually designate a region as "multisensory." While the documentation of multisensory effects within many different cortical areas is clear, often little information is available about their proportions or net functional effects. To assess the compositional and functional features that contribute to the multisensory nature of a region, the present investigation used multichannel neuronal recording and tract tracing methods to examine the ferret temporal region: the lateral rostral suprasylvian sulcal area.
View Article and Find Full Text PDFDespite the fact that unisensory and multisensory neurons are comingled in every neural structure in which they have been identified, no systematic comparison of their response features has been conducted. Towards that goal, the present study was designed to examine and compare measures of response magnitude, latency, duration and spontaneous activity in unisensory and bimodal neurons from the ferret parietal cortex. Using multichannel single-unit recording, bimodal neurons were observed to demonstrate significantly higher response levels and spontaneous discharge rates than did their unisensory counterparts.
View Article and Find Full Text PDFMultisensory processing in the brain underlies a wide variety of perceptual phenomena, but little is known about the underlying mechanisms of how multisensory neurons are formed. This lack of knowledge is due to the difficulty for biological experiments to manipulate and test the parameters of multisensory convergence, the first and definitive step in the multisensory process. Therefore, by using a computational model of multisensory convergence, this study seeks to provide insight into the mechanisms of multisensory convergence.
View Article and Find Full Text PDFMultisensory convergence is the first, requisite step in the process that generates neural responses to events involving more than one sensory modality. Although anatomical studies have documented the merging of afferents from different sensory modalities within a given area, they do not provide insight into the architecture of connectivity at the neuronal level that underlies multisensory processing. In fact, few anatomical studies of multisensory convergence at the neuronal level have been conducted.
View Article and Find Full Text PDFTraditionally, neuronal studies of multisensory processing proceeded by first identifying neurons that were overtly multisensory (e.g., bimodal, trimodal) and then testing them.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2009
In response to early or developmental lesions, responsiveness of sensory cortex can be converted from the deprived modality to that of the remaining sensory systems. However, little is known about capacity of the adult cortex for cross-modal reorganization. The present study examined the auditory cortices of animals deafened as adults, and observed an extensive somatosensory conversion within as little as 16 days after deafening.
View Article and Find Full Text PDFAlthough responses to auditory stimuli have been extensively examined in the well-known regions of auditory cortex, there are numerous reports of acoustic sensitivity in cortical areas that are dominated by other sensory modalities. Whether in 'polysensory' cortex or in visual or somatosensory regions, auditory responses in non-auditory cortex have been described largely in terms of auditory processing. This review takes a different perspective that auditory responses in non-auditory cortex, either through multisensory subthreshold or bimodal processing, provide subtle but consistent expansion of the range of activity of the dominant modality within a given area.
View Article and Find Full Text PDFA new subthreshold form of multisensory processing has been recently identified that results from the convergence of suprathreshold excitatory inputs from one modality with subthreshold inputs from another. Because of the subthreshold nature of the second modality, descriptive measures of sensory features such as receptive field properties or location are not directly apparent as they are for traditional bimodal neurons. This raises the question of whether or not subthreshold signals actually convey sensory-specific receptive field information as seen in their bimodal counterparts, or if they represent non-specific effects such as arousal.
View Article and Find Full Text PDFConvergence of afferents from different sensory modalities has generally been thought to produce bimodal (and trimodal) neurons (i.e., exhibit suprathreshold excitation to more than 1 sensory modality).
View Article and Find Full Text PDFTo date, evaluation of the neuronal basis for multisensory processing has focused on the convergence pattern that provides excitation from more than one sensory modality. However, a recent study (Dehner et al. in Cereb Cortex 14:387-401, 2004) has demonstrated excitatory-inhibitory multisensory effects that do not follow this conventional pattern and the present investigation documented a similar example of subthreshold cross-modal effects.
View Article and Find Full Text PDFExamples of convergence of visual and auditory, or visual and somatosensory, inputs onto individual neurons abound throughout the brain, but substantially fewer incidences of auditory-somatosensory neurons have been reported. The present experiments sought to examine auditory-somatosensory convergence to assess whether there is a feature of this type of convergence that might obscure it from conventional methods of multisensory detection. Auditory-somatosensory convergence was explored in cat anterior ectosylvian sulcus (AES) cortex, where higher-order somatosensory area IV (SIV) and auditory field of the anterior ectosylvian sulcus (FAES) share a common border.
View Article and Find Full Text PDF