Differences of sex development (DSDs) are a constellation of conditions that result in genital ambiguity or complete sex reversal. Although determining the underlying genetic variants can affect clinical management, fewer than half of undermasculinized males ever receive molecular diagnoses. Next-generation sequencing (NGS) technology has improved diagnostic capabilities in several other diseases, and a few small studies suggest that it may improve molecular diagnostic capabilities in DSDs.
View Article and Find Full Text PDFObjective: To provide an overview of the history of the North American Testis Workshop (NATW), of its relationship to the American Society of Andrology (ASA), and of the publications that resulted from the first 25 workshops.
Methods: The collection of volumes and journal articles that relate to the NATW was searched.
Discussion And Conclusion: During the first twenty-five meetings of the NATW, a remarkable number of breakthroughs regarding every aspect of the testis were presented.
Arch Pharm (Weinheim)
April 2016
Two photo-crosslinking biarsenical (CrAsH-EDT2 )-modified probes were synthesized that are expected to be useful tools for tetracysteine-labeled proteins to facilitate the co-affinity purification of their DNA binding sequences and interacting proteins. In addition, improvements for the synthesis of CrAsH-EDT2 and N(1) -(4-azido-2-nitrophenyl)hexane-1,6-diamine are reported. Both photoprobes effectively entered HeLa cells (and the nucleus) and were dependent on the tetracysteine motif in recombinant DMRT1 (doublesex and Mab3-related transcription factor) to induce fluorescence, suggesting that their crosslinking abilities can be exploited for the identification of nucleic acids and proteins associated with a protein of interest.
View Article and Find Full Text PDFThe nuclear receptor steroidogenic factor 1 (SF-1, AD4BP, NR5A1) is a key regulator of the endocrine axes and is essential for adrenal and gonad development. Partial rescue of Nr5a1(-/-) mice with an SF-1-expressing transgene caused a hypomorphic phenotype that revealed its roles in Leydig cell development. In contrast to controls, all male rescue mice (Nr5a1(-/-);tg(+/0)) showed varying signs of androgen deficiency, including spermatogenic arrest, cryptorchidism, and poor virilization.
View Article and Find Full Text PDFSF-1 (NR5A1) overexpression can induce adrenocortical tumor formation in transgenic mice and is associated with more severe prognosis in patients with adrenocortical cancer. In this study we have identified Vanin-1 (Vnn1), a SF-1 target gene, as a novel modulator of the tumorigenic effect of Sf-1 overexpression in the adrenal cortex. Vanin-1 is endowed with pantetheinase activity, releasing cysteamine in tissues and regulating cell response to oxidative stress by modulating the production of glutathione.
View Article and Find Full Text PDFDMRT1 is an evolutionarily conserved transcriptional factor expressed only in the postnatal testis, where it is produced in Sertoli cells and germ cells. While deletion of Dmrt1 in mice demonstrated it is required for postnatal testis development and fertility, much is still unknown about its temporal- and cell-specific functions. This study characterized a novel mouse model of DMRT1-deficient germ cells that was generated by breeding Dmrt1-null (Dmrt1(-/-)) mice with Wt1-Dmrt1 transgenic (Dmrt1(+/-;tg)) mice, which express a rat Dmrt1 cDNA in gonadal supporting cells by directing it from the Wilms tumor 1 locus in a yeast artificial chromosome transgene.
View Article and Find Full Text PDFTargets of steroidogenic factor 1 (SF1; also known as NR5A1 and AD4BP) have been identified within cells at every level of the hypothalamic-pituitary-gonadal and -adrenal axes, revealing SF1 to be a master regulator of major endocrine systems. Mouse embryos express SF1 in the genital ridge until Embryonic Day 13.5 (E13.
View Article and Find Full Text PDFFollicle-stimulating hormone (FSH), a pituitary glycoprotein hormone, is an integral component of the endocrine axis that regulates gonadal function and fertility. To transmit its signal, FSH must bind to its receptor (FSHR) located on Sertoli cells of the testis and granulosa cells of the ovary. Thus, both the magnitude and the target of hormone response are controlled by mechanisms that determine FSHR levels and cell-specific expression, which are supported by transcription of its gene.
View Article and Find Full Text PDFThe DM domain proteins Doublesex- and MAB-3-related transcription factors (DMRTs) are widely conserved in metazoan sex determination and sexual differentiation. One of these proteins, DMRT1, plays diverse and essential roles in development of the vertebrate testis. In mammals DMRT1 is expressed and required in both germ cells and their supporting Sertoli cells.
View Article and Find Full Text PDFDMRT1 is a transcription factor expressed only in Sertoli cells and undifferentiated spermatogonia of the postnatal testis, where it is required for proper cellular differentiation and fertility. To elucidate the transcriptional regulatory regions that provide DMRT1's cell-specific expression, transgenic mice containing a LacZ reporter gene driven by variable amounts of rat Dmrt1 5' flanking sequence, 9 kb and smaller, were evaluated. Examination of transgene expression by RT-PCR indicated that multiple promoter regions direct Dmrt1 to the testis and that sequences upstream of 2.
View Article and Find Full Text PDFPituitary FSH promotes pubertal timing and normal gametogenesis by binding its receptor (FSHR) located on Sertoli and granulosa cells of the testis and ovary, respectively. Studies on Fshr transcription provide substantial evidence that upstream stimulatory factor (USF) 1 and USF2, basic helix-loop-helix leucine zipper proteins, regulate Fshr through an E-box within its promoter. However, despite the strong in vitro support for USF1 and USF2 in Fshr regulation, there is currently no in vivo corroborating evidence.
View Article and Find Full Text PDFBiol Reprod
June 2008
Gamendazole was recently identified as an orally active antispermatogenic compound with antifertility effects. The cellular mechanism(s) through which these effects occur and the molecular target(s) of gamendazole action are currently unknown. Gamendazole was recently designed as a potent orally active antispermatogenic male contraceptive agent.
View Article and Find Full Text PDFSteroidogenic factor-1 (SF-1/Ad4BP; NR5A1), a nuclear receptor transcription factor, has a pivotal role in adrenal and gonadal development in humans and mice. A frequent feature of childhood adrenocortical tumors is SF-1 amplification and overexpression. Here we show that an increased SF-1 dosage can by itself augment human adrenocortical cell proliferation through concerted actions on the cell cycle and apoptosis.
View Article and Find Full Text PDFImmunohistochemistry was used to examine GCNA1, a germ cell-specific protein, together with DMRT1 (Doublesex and Mab-3-related transcription factor-1), a transcription factor implicated in Sertoli cell and germ cell function, in order to resolve DMRT1's cellular profile during pre- and postnatal gonad development in the mouse. In the indifferent gonad (10.5-11.
View Article and Find Full Text PDFMol Cell Endocrinol
January 2007
The gonadotropin follicle-stimulating hormone (FSH) is required for initiation and maintenance of normal gametogenesis and acts through a specific, cell-surface receptor (Fshr) present only on Sertoli and granulosa cells in the gonads. Despite extensive examination of the transcriptional mechanisms regulating Fshr, the sequences directing its expression to these cells remain unidentified. To establish the minimal region necessary for Fshr expression, we generated transgenic mice carrying a yeast artificial chromosome (YAC) that contained 413 kilobases (kb) of the rat Fshr locus (YAC60).
View Article and Find Full Text PDFThe cell-surface receptor for the gonadotropin follicle-stimulating hormone (FSH) is expressed exclusively on Sertoli cells of the testis and granulosa cells of the ovary. FSH signal transduction through its receptor (Fshr) is critical for the timing and maintenance of normal gametogenesis in the mammalian gonad. In the 13 years since the gene encoding Fshr was first cloned, the mechanisms controlling its transcription have been extensively examined, but a clear understanding of what drives its unique cell-specificity remains elusive.
View Article and Find Full Text PDFSteroidogenic factor 1 (SF-1, Nr5a1, and Ad4bp) is an orphan nuclear receptor required for adrenal and gonad development and endocrine regulation. To extend our understanding of SF-1 function and the mechanisms controlling its expression, a transgenic rescue strategy was employed to locate important transcriptional control regions and to reveal functional roles of the protein. A rat yeast artificial chromosome containing Ftz-F1, the gene encoding SF-1, was used to generate mice with different transgenes that varied in size.
View Article and Find Full Text PDFSteroidogenic factor 1 (SF-1/Nr5a1) is an orphan nuclear receptor encoded by the Ftz-F1 gene and is required for gonad and adrenal development and regulation of hormone production within the reproductive and adrenal axes. To extend our understanding of Ftz-F1 and its role in SF-1 expression, we identified and characterized a yeast artificial chromosome (YAC) containing Ftz-F1. Within this YAC, Ftz-F1 is centrally located and flanked by genes encoding a second orphan nuclear receptor, germ cell nuclear factor, and proteasome (prosome, macropain) subunit beta type 7.
View Article and Find Full Text PDFExpression of the FSH receptor (Fshr) is restricted to testicular Sertoli cells and ovarian granulosa cells, thereby limiting the direct targets of FSH action to these somatic cells of the gonads. Earlier studies indicate that transcription of Fshr in the gonads requires elements outside the gene's immediate 5' flanking sequence. To help uncover candidate regulatory sequences, comparative genomics and deoxyribonuclease I hypersensitivity mapping were employed.
View Article and Find Full Text PDFThe doublesex and mab-3 related transcription factor 1 (Dmrt1) is a putative transcriptional regulator that is expressed exclusively in the gonads and is required for postnatal testis differentiation. Here we describe the transcriptional mechanisms regulating testis-specific expression of the Dmrt1 gene. Transient-transfection analysis identified a region of the promoter between kb -3.
View Article and Find Full Text PDFSteroidogenic factor 1 (SF-1) is an orphan nuclear receptor that is important for expression of genes involved in sexual differentiation, testicular and adrenal development, and hormone synthesis and regulation. To better understand the mechanisms required for SF-1 production, we employed transient transfection analysis and electrophoretic mobility shift assays to characterize the elements and proteins required for transcriptional activity of the SF-1 proximal promoter in testicular Sertoli and Leydig cells and adrenocortical cells. Direct comparison of SF-1-promoter activity in testis and adrenal cell types established that a similar set of regulatory elements (an E box, CCAAT box, and Sp1-binding sites) is required for proximal promoter activity in these cells.
View Article and Find Full Text PDFRecent Prog Horm Res
June 2002
Results from experiments using mouse models suggest that the role of follicle-stimulating hormone (FSH) in spermatogenesis is the regulation of Sertoli cell proliferation and, ultimately, the size and spermatogenic capacity of the testis. The regulation of the expression of the FSH receptor (FSHR) gene is very cell specific and plays an initial role in the ultimate response of the Sertoli cells to FSH. The extreme cell specificity and the importance of the FSH response to spermatogenesis have led to an extensive characterization of the promoter of the FSHR gene.
View Article and Find Full Text PDFDmrt1 is a recently described gene that is specifically expressed in the gonads and is required for postnatal testis differentiation. Here, we describe the transcriptional mechanisms regulating the Dmrt1 proximal promoter in testicular Sertoli cells. A genomic clone containing exon 1 of the rat Dmrt1 gene and more than 9 kilobases of 5' flanking sequence was isolated and characterized.
View Article and Find Full Text PDF