Stearoyl-CoA desaturase-1 (SCD1) plays an important role in lipid metabolism. Inhibition of SCD1 activity represents a potential novel approach for the treatment of metabolic diseases such as obesity, type 2 diabetes and dyslipidemia, as well as skin diseases, acne and cancer. Herein, we report the synthesis and structure-activity relationships (SAR) of a series of novel triazolone derivatives, culminating in the identification of pyrazolyltriazolone 17a, a potent SCD1 inhibitor, which reduced plasma C16:1/C16:0 triglycerides desaturation index (DI) in an acute Lewis rat model in a dose dependent manner, with an ED50 of 4.
View Article and Find Full Text PDFSeveral five- and six-membered heterocycles were introduced to replace the C2-position amide bond of the original 2-aminothiazole-based hit compound 5. Specifically, replacement of the amide bond with an imidazolidinone moiety yielded a novel and potent thiazolylimidazolidinone series of SCD1 inhibitors. XEN723 (compound 22) was identified after optimization of the thiazolylimidazolidinone series.
View Article and Find Full Text PDFWe discovered a series of novel and potent thiazolylpyridinone-based SCD1 inhibitors based on a 2-aminothiazole HTS hit by replacing the amide bond with a pyridinone moiety. Compound 19 demonstrated good potency against SCD1 in vitro and in vivo. The mouse liver microsomal SCD1 in vitro potency for 19 was improved by more than 240-fold compared to the original HTS hit.
View Article and Find Full Text PDFStearoyl-CoA desaturase-1 (SCD1) catalyzes de novo synthesis of monounsaturated fatty acids from saturated fatty acids. Studies have demonstrated that rodents lacking a functional SCD1 gene have an improved metabolic profile, including reduced weight gain, lower triglycerides, and improved insulin response. In this study, we discovered a series of piperazinylpyridazine-based highly potent, selective, and orally bioavailable compounds.
View Article and Find Full Text PDF